Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Three Asymmetrical Conjugated D-π-D′ Sulfur-Containing Chromophores with a Focus on Two-Photon Absorption

Zhang-Jun Hu A B , Rui-Long Zhang A , Ping-Ping Sun A , Lin Li A , Jie-Ying Wu A E , Jia-Xiang Yang A C , Yu-Peng Tian A C E and Chuan-Kui Wang D
+ Author Affiliations
- Author Affiliations

A School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, 3 Feixi Road, Hefei 230039, PR China.

B State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.

C State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda Nanlu, Jinan 250100, PR China.

D Department of Physics, Shandong Normal University, 1 Daxue Road, Jinan 250014, PR China.

E Corresponding authors. Email: jywu1957@163.com; yptian@ahu.edu.cn

Australian Journal of Chemistry 64(2) 174-179 https://doi.org/10.1071/CH10229
Submitted: 5 June 2010  Accepted: 19 October 2010   Published: 15 February 2011

Abstract

Three novel asymmetrical D-π-D′ type sulfur-containing chromophores, (E)-4-(4-(benzylthio)styryl)-N,N-diethylbenzenamine (S1), (E)-4-(4-(tert-butylthio)styryl)-N,N-diethylbenzenamine (S2) and (E)-4-(4-(thio)styryl)-N,N-diethylbenzenamine (S3), were synthesized and characterized. Two kinds of substituents and hydrogen were introduced into the three different chromophores to investigate the influence of electron distribution on the sulfur atom. Meanwhile, a simple synthetic strategy of π-conjugated 4-(thio)styrene derivatives was performanced successfully. Linear and non-linear optical properties of S1, S2 and S3 were investigated both experimentally and theoretically. The optical properties indicate that they all have obvious characteristics of asymmetrical dipole molecules. The measured maximum two-photon cross-sections of S13 are 79, 57 and 19 GM (Goeppert-Mayer), respectively. It shows that the different substituents on the sulfur atom in molecules S13 lead to different electronic structures, which affect the optical properties. In these structures, the aromatic benzyl substituent (in S1) is superior for optimizing two-photon activity in the designed molecular framework.


References

[1]  M. Göppert-Mayer, Ann. Phys. 1931, 401, 273.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  D. A. Parthenopoulos, P. M. Rentzepis, Science 1989, 245, 843.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmt1WqtL4%3D&md5=3db1c69559cc3c82a2335a5c9a2b85ebCAS | 17773360PubMed |

[3]  (a) R. Piner, J. Zhu, F. Xu, S. Hong, C. Mirkin, Science 1999, 283, 661.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXot1KksA%3D%3D&md5=3be3f94789bc75efd6d97dfa6c9cfa34CAS | 9924019PubMed |
      (b) W. Denk, J. H. Strickler, W. W. Webb, Science 1990, 248, 73.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) D. R. Larson, W. R. Zipfle, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, Science 2003, 300, 1434.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) S. Maruo, O. Nakamura, S. Kawata, Opt. Lett. 1997, 22, 132.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXpt1Citw%3D%3D&md5=a6b3279da89a88a0dd661217f9d8926dCAS | 18183126PubMed |
      (b) S. Kawata, H. B. Sun, T. Tanaka, K. Takada, Nature 2001, 412, 697.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  (a) P. K. Frederiksen, M. Jorgensen, P. R. Ogilby, J. Am. Chem. Soc. 2001, 123, 1215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksVynuw%3D%3D&md5=b02d51722f0ff448a0f68c42f7b2c6b5CAS | 11456676PubMed |
      (b) A. Abbotto, L. Beverina, R. Bozio, S. Bradamante, C. Ferrante, G. A. Pagani, R. Signorini, Adv. Mater. 2000, 12, 1963.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  (a) C. F. Zhao, G. S. He, J. D. Bhawalker, C. K. Park, P. N. Prasad, Chem. Mater. 1995, 7, 1979.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXot1Krt7w%3D&md5=7128ed04827f95136fe8fb1f431899e7CAS |
      (b) Q. D. Zheng, G. S. He, T. C. Lin, P. N. Prasad, J. Mater. Chem. 2003, 13, 2499.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. X. Yuan, G. S. He, P. N. Prasad, Chem. Mater. 1998, 10, 1863.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktFWitbg%3D&md5=1b5ce7336b3254d7cf6804ddaa4da066CAS |

[8]  M. Albota, D. Beljonne, L. Brdas, J. E. J. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rçckel, M. Rumi, C. Subramaniam, W. W. Webb, X. L. Wu, C. Xu, Science 1998, 281, 1653.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVWis7c%3D&md5=9bb9609e6167cfe9e21ff2ccc350c120CAS | 9733507PubMed |

[9]  Q. D. Zheng, G. S. He, P. N. Prasad, Chem. Mater. 2005, 17, 6004.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVymu7fE&md5=85a46db2b5b610de8be27a64184f9367CAS |

[10]  G. P. Bartholomew, I. Ledoux, S. Mukamel, G. C. Bazan, J. Zyss, J. Am. Chem. Soc. 2002, 124, 13480.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVymsr8%3D&md5=2b4c9ebb1dc94e6ba37e69fd03283697CAS | 12418901PubMed |

[11]  L. Li, Y. P. Tian, J. X. Yang, P. P. Sun, J. Y. Wu, H. P. Zhou, S. Y. Zhang, B. K. Jin, X. J. Xing, C. K. Wang, M. Li, G. H. Cheng, H. H. Tang, W. H. Huang, X. T. Tao, M. H. Jiang, Chem. Asian J. 2009, 4, 668.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVaisbw%3D&md5=dbb39eb133dd6801a1b3d96fca9f521fCAS | 19338012PubMed |

[12]  (a) M. Rumi, J. E. Ehrlich, A. A. Herikal, J. W. Perry, S. Barlow, Z. Hu, D. McCor-Maughon, T. C. Parker, H. Röckel, S. Thayumanavan, S. R. Marder, D. Beljonne, J. L. Brédas, J. Am. Chem. Soc. 2000, 122, 9500.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtlCisLo%3D&md5=e0baf5ccc98b78c11fd4c77fb0805d11CAS |
      (b) Z. J. Hu, J. X. Yang, Y. P. Tian, X. T. Tao, L. Tian, H. P. Zhou, G. B. Xu, W. T. Yu, Y. X. Yan, Y. H. Sun, C. K. Wang, X. Q. Yu, M. H. Jiang, Bull. Chem. Soc. Jpn. 2007, 80, 986.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. M. Kimw, B. R. Cho, Chem. Commun. 2009, 153.

[13]  (a) S. J. K. Pond, M. Rumi, M. D. Levin, T. C. Parker, D. Beljonne, M. W. Day, J. L. Brédas, S. R. Marder, J. W. Perry, J. Phys. Chem. A 2002, 106, 11470.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotlCjtrg%3D&md5=d71360055a4d16acdc9688e69fee1bcdCAS |
      (b) X. Zhang, X. Q. Yu, Y. M. Sun, W. He, Y. Z. Wu, Y. G. Feng, X. T. Tao, M. H. Jiang, Opt. Mater. 2006, 28, 1366.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) L. Tian, Z. J. Hu, P. F. Shi, H. P. Zhou, J. Y. Wu, Y. P. Tian, Y. F. Zhou, X. T. Tao, M. H. Jiang, J. Lumin. 2007, 127, 423.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  Z. J. Hu, P. P. Sun, L. Li, Y. P. Tian, J. X. Yang, J. Y. Wu, H. P. Zhou, L. M. Tao, C. K. Wang, M. Li, G. H. Cheng, H. H. Tang, X. T. Tao, M. H. Jiang, Chem. Phys. 2009, 355, 91.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVGqtQ%3D%3D&md5=d65cab93bb9cbb77827fcadab8928603CAS |

[15]  (a) Z. M. Xue, Y. P. Tian, D. Wang, M. H. Jiang, Dalton Trans. 2003, 1373.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlGgsLg%3D&md5=3b40bcf371685c7a23a54f27515e1e54CAS |
      (b) Y. Ren, Q. Xin, X. T. Tao, L. Wang, X. Q. Yu, J. X. Yang, M. H. Jiang, Chem. Phys. Lett. 2005, 414, 253.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  K. Rotkiewicz, K. H. Grellmann, Z. R. Grabowski, Chem. Phys. Lett. 1973, 19, 315.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktFWmsb4%3D&md5=28ff9427b5f94fd7370069692a8a4ab3CAS |

[17]  U. Narang, C. F. Zhao, J. D. Bhawalkar, F. V. Bright, P. N. Prasad, J. Phys. Chem. 1996, 100, 4521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Wmsbk%3D&md5=ddd0ab9d012ff6de1a7535d59d1fe2d6CAS |

[18]  Z. J. Hu, J. X. Yang, Y. P. Tian, H. P. Zhou, X. T. Tao, G. B. Xu, W. T. Yu, X. Q. Yu, M. H. Jiang, J. Mol. Struct. 2007, 839, 50.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFyhtbs%3D&md5=2741c9004aaf3d9f4b2b05a806065d49CAS |

[19]  C. Xu, W. W. Webb, J. Opt. Soc. Am. B 1996, 13, 481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVCmtbY%3D&md5=aa1d09b84b6f986a3046284713aad1e2CAS |

[20]  M. A. Albota, C. Xu, W. W. Webb, Appl. Opt. 1998, 37, 7352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlSitLY%3D&md5=8fed803c7295b346781d56714a98b750CAS | 18301569PubMed |

[21]  MOLEKEL, available at: http://www.cscs.ch/molekel/.

[22]  G. A. Reynolds, K. H. Drexhage, Opt. Commun. 1975, 13, 222.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXktFyltr4%3D&md5=976c64c90790e09666e507b9cf432f05CAS |

[23]  (a) Y. X. Yan, J. Solid State Chem. 2003, 172, 364.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvV2nsrw%3D&md5=40843dd1dbf6cfad5d465f38db10aedcCAS |
      (b) F. Jin, J. F. Li, H. P. Zhou, J. Y. Wu, J. X. Yang, Y. P. Tian, M. H. Jiang, J. Mol. Struct. 2007, 829, 202.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  Q. D. Zheng, G. S. He, P. N. Prasad, J. Mater. Chem. 2005, 15, 579.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtFGhsQ%3D%3D&md5=188d085d1bf2f0bb1b9c8d6d83c2c57aCAS |

[25]  J. X. Yang, X. T. Tao, C. X. Yuan, Y. X. Yan, L. Wang, Z. Liu, Y. Ren, M. H. Jiang, J. Am. Chem. Soc. 2005, 127, 3278.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhsF2is7k%3D&md5=fef1e0e1f3f6a20c45c5a243c0bd13f6CAS | 15755135PubMed |