Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

O–H Bond Dissociation Energies A

Bun Chan A B , Michael Morris A and Leo Radom A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, University of Sydney, Sydney, NSW 2006, Australia.

B Corresponding authors. Email: chan_b@chem.usyd.edu.au; radom@chem.usyd.edu.au

Australian Journal of Chemistry 64(4) 394-402 https://doi.org/10.1071/CH11028
Submitted: 7 January 2011  Accepted: 8 March 2011   Published: 18 April 2011

Abstract

High-level composite, ab initio and density functional theory (DFT) procedures have been employed to study O–H bond dissociation energies (BDEs), as well as radical stabilization energies (RSEs) in the oxygen-centred radicals that are formed in the dissociation of the O–H bonds. Benchmark values are provided by Wn results up to W3.2 and W4.x. We are able to recommend revised BDE values for FO–H (415.6 ± 3 kJ mol–1), MeC(O)O–H (459.8 ± 6 kJ mol–1) and CF3CH2O–H (461.9 ± 6 kJ mol–1) on the basis of high-level calculations. We find that Gn-type procedures are generally reliable and cost-effective, and that some contemporary functionals and double-hybrid DFT procedures also provide adequate O–H BDEs/RSEs. We note that the variations in the O–H BDEs are associated with variations in the stabilities of not only the radicals but also the closed-shell precursor molecules. Most substituents destabilize both species, with σ-electron-withdrawing groups having larger destabilizing effects, while π-electron acceptors are stabilizing. Although there is little correlation between the stabilizing/destabilizing effects of the substituents and the RSEs, we present some general patterns in the RSEs that emerge from the present study.


References

[1]  See for example: L. R. Mahoney, Angew. Chem. Int. Ed. Engl. 1969, 8, 547. 10.1002/ANIE.196905471
      (b) T. Brinck, M. Haeberlein, M. Jonsson, J. Am. Chem. Soc. 1997, 119, 4239.
         | Crossref | GoogleScholarGoogle Scholar |
      L. R. C. Barclay, M. R. Vinqvist, in The Chemistry of Phenols (Ed. Z. Rappoport) 2003, Pt. 2, Ch. 12, pp. 839–908 (John Wiley & Sons: Hoboken).
      (d) D. A. Pratt, G. A. DiLabio, P. Mulder, K. U. Ingold, Acc. Chem. Res. 2004, 37, 334.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) E. Klein, V. Lukes, J. Phys. Chem. A 2006, 110, 12312.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) G. Litwinienko, K. U. Ingold, Acc. Chem. Res. 2007, 40, 222.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. C. Foti, J. Pharm. Pharmacol. 2007, 59, 1673.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  Y. Fu, L. Liu, Y. Mou, B.-L. Lin, Q.-X. Guo, J. Mol. Struct. 2004, 674, 241.
         | 1:CAS:528:DC%2BD2cXjsVCkur8%3D&md5=5e25ea1ae580260d2f19bafc68843a62CAS |

[3]  See for example: D. J. Henry, C. J. Parkinson, P. M. Mayer, L. Radom, J. Phys. Chem. A 2001, 105, 6750. 10.1021/JP010442C
      (b) G. P. F. Wood, D. J. Henry, L. Radom, J. Phys. Chem. A 2003, 107, 7985.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Zipse, Top. Curr. Chem. 2006, 263, 163.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) A. S. Menon, G. P. F. Wood, D. Moran, L. Radom, J. Phys. Chem. A 2007, 111, 13638.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. L. Coote, C. Y. Lin, A. L. J. Beckwith, A. A. Zavitsas, Phys. Chem. Chem. Phys. 2010, 12, 9597.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) M. L. Coote, A. Pross, L. Radom, Org. Lett. 2003, 5, 4689.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1OisLc%3D&md5=47d558b1d7bce52a596ccf1ec2263176CAS | 14627416PubMed |
      For an interesting philosophical discussion, see: M. L. Coote, A. B. Dickerson, Aust. J. Chem. 2008, 61, 163. 10.1071/CH07339

[5]  A. D. Boese, M. Oren, O. Atasoylu, J. M. L. Martin, M. Kállay, J. Gauss, J. Chem. Phys. 2004, 120, 4129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslaksLc%3D&md5=dc90a6ad23d62aeb8b0687c230db6951CAS | 15268579PubMed |

[6]  A. Karton, E. Rabinovich, J. M. L. Martin, B. Ruscic, J. Chem. Phys. 2006, 125, 144108.
         | Crossref | GoogleScholarGoogle Scholar | 17042580PubMed |

[7]  L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 2007, 126, 084108.
         | Crossref | GoogleScholarGoogle Scholar | 17343441PubMed |

[8]  See for example: W. J. Hehre, L. Radom, P. p. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory 1986 (Wiley: New York).
      W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, 2nd edn 2001 (Wiley: New York).
      F. Jensen, Introduction to Computational Chemistry, 2nd edn 2007 (Wiley: Chichester).

[9]  M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.01 2009 (Gaussian, Inc.: Wallingford, CT).

[10]  H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz, P. Celani, G. Knizia, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO 2009.1 2009 (University College Cardiff Consultants Limited: Cardiff, U.K.).

[11]  M. Kállay, P. R. Surján, J. Chem. Phys. 2001, 115, 2945.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  D. J. Henry, M. B. Sullivan, L. Radom, J. Chem. Phys. 2003, 118, 4849.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1ensL0%3D&md5=692be8635c7419e387ddcada36767f62CAS |

[13]  L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 2007, 127, 124105.
         | Crossref | GoogleScholarGoogle Scholar | 17902891PubMed |

[14]  A. D. Boese, J. M. L. Martin, J. Chem. Phys. 2004, 121, 3405.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1Kjtb4%3D&md5=9fc0721869738fa28a65ffcb5f97c9dcCAS | 15303903PubMed |

[15]  H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J. Chem. Phys. 2001, 115, 3540.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVehs7w%3D&md5=d181205d91745437963ed2356e2f1a11CAS |

[16]  Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=1dcbfb56c53376b72712c218c1aec43aCAS |

[17]  T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 2004, 393, 51.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFKgtbs%3D&md5=41773220f9bc9ab475914f76a05d2542CAS |

[18]  Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFyltbY%3D&md5=1dcbfb56c53376b72712c218c1aec43aCAS |

[19]  S. Grimme, J. Chem. Phys. 2006, 124, 034108.
         | Crossref | GoogleScholarGoogle Scholar | 16438568PubMed |

[20]  A. Tarnopolsky, A. Karton, R. Sertchook, D. Vuzman, J. M. L. Martin, J. Phys. Chem. A 2008, 112, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVegu7vO&md5=5976648330328b980e9e8714e4b7bc9eCAS | 18081266PubMed |

[21]  D. C. Graham, A. S. Menon, L. Goerigk, S. Grimme, L. Radom, J. Phys. Chem. A 2009, 113, 9861.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpt1Kjsrs%3D&md5=1b242df1d04993b927dbae95db284993CAS | 19645437PubMed |

[22]  B. Chan, J. Deng, L. Radom, J. Chem. Theory Comput. 2011, 7, 112.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFaktLzK&md5=e1a0b461d34342731f1c1475477acf79CAS |

[23]  J. P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 2007, 111, 11683.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFOrs77F&md5=d21971d06bc05c5a63c887f790dd0560CAS | 17948971PubMed |

[24]  Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies 2007 (CRC Press: Boca Raton).

[25]  A. Karton, A. Tarnopolsky, J.-F. Lamère, G. C. Schatz, J. M. L. Martin, J. Phys. Chem. A 2008, 112, 12868.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSnt7vI&md5=799190d49c81d93b18ca5dc3eebe4c64CAS | 18714947PubMed |

[26]  NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (Eds P. J. Linstrom, W. G. Mallard) 2010 (National Institute of Standards and Technology: Gaithersburg, MD).

[27]  Obtained from the W4.x total atomization energy at 0 K from ref. [25] and ΔH 298 from B3-LYP/cc-pVTZ+d frequencies (scaled by 0.985).

[28]  F. G. Bordwell, W. Z. Liu, J. Am. Chem. Soc. 1996, 118, 10819.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1Gmt7Y%3D&md5=e94cea1861b31217d5541d27ee6f8d46CAS |

[29]  M. Jonsson, J. Phys. Chem. 1996, 100, 6814.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvV2iu74%3D&md5=fb3834f752e187ea3394460aac4b9d84CAS |

[30]  We estimate an error bar of 3 kJ mol–1 based on the typical sub-kJ mol–1 accuracy of W4.x and a conservatively-estimated uncertainty of 2 kJ mol–1 associated with the use of B3-LYP/cc-pVTZ+d frequencies in the evaluation of thermal corrections for enthalpies.

[31]  Values obtained by adjusting the G4 and W1w BDEs for their respective apparent systematic underestimation (1.1 kJ mol–1) and overestimation (3.4 kJ mol–1) of O–H BDEs, and taking the average of the adjusted values. The error bar of 6 kJ mol–1 corresponds to three standard deviations for the similarly adjusted G4,W1w values for all systems where G4 and W1w BDEs are available, when compared with the benchmark W4.x or W3.2 values.

[32]  G. P. F. Wood, L. Radom, G. A. Petersson, E. C. Barnes, M. J. Frisch, J. A. Montgomery, J. Chem. Phys. 2006, 125, 094106.
         | Crossref | GoogleScholarGoogle Scholar | 16965071PubMed |

[33]  Systems with the following substituents are not included: CF3O, CCl3O, CF3CH2, t-Bu, CF3, CF3CF2, Ph, PhCH2, MeC(O), CF3C(O), NH2C(O), HOC(O), NO2.

[34]  Y. Fu, X.-Y. Dong, Y.-M. Wang, L. Liu, Q.-X. Guo, Chin. J. Chem. 2005, 23, 474.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlyisbo%3D&md5=c8e6411caa8f8b68eca5b9e1e67f5ed1CAS |