Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Synthesis, Physical Properties, Structural, and Electrochemical Characterization of Methimidazolium and Imidazolium-based Tetracyanoquinodimethane Anion Radical Salts

Lisandra L. Martin A D , Amal I. Siriwardana A B , Jinzhen Lu A , Xiaohu Qu A , Chuan Zhao A B C and Alan M. Bond A B D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Monash University, Clayton, Vic. 3800, Australia.

B Australian Research Council, Special Research Centre for Green Chemistry, Monash University, Clayton, Vic. 3800, Australia.

C Current address: School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.

D Corresponding authors. Email: lisa.martin@monash.edu; alan.bond@monash.edu




Lisandra L. Martin (Lisa) is currently Associate Professor in the School of Chemistry, Monash University. She received her B.Sc. (Hons) from Monash University in 1981 and Ph.D. from The Australian National University in 1986. The award of an Alexander von Humboldt Fellowship enabled her to spend 2 years training with Professor Karl Weighardt, at the Rhur University, Bochum, Germany 1990–91. Subsequently, she received a Fulbright Research Fellowship taken up with Professor Barbara Burgess at the University of California, Irvine (1992) that opened the world of biological chemistry, molecular biology and biophysics, to her. Her research interests are dominated by understanding the structure and function of redox proteins and membrane active peptides. Importantly, her approach is to create biocompatible interfaces in vitro; biomimetic lipid membranes and biomaterials that enable interrogation of these biomolecules under pseudo-physiological conditions.

Australian Journal of Chemistry 64(6) 732-740 https://doi.org/10.1071/CH11044
Submitted: 25 January 2011  Accepted: 22 February 2011   Published: 27 June 2011

Abstract

Two methimazolium and two imidazolium-based salts derived from combination with the tetracyanoquinodimethane (TCNQ) radical anion have been synthesized (14). The 1:1 (cation:anion) stoichiometry of the chemically synthesized materials is fully supported by steady-state voltammetric measurements at a microdisc electrode in acetonitrile. The methimazolium TCNQ salts (1 and 2), which contain an acidic proton on the cation, exhibit a protonation step coupled to the TCNQ1–/2– charge-transfer process. Solid–solid transformations at a TCNQ-modified electrode also lead to electrochemical synthesis of 14, but also indicate that other cation:anion stoichiometries are accessible. Atomic force microscopy for electrochemically synthesized samples exhibit rod-like morphology. Conductivity measurements on chemically and electrochemically prepared salts are in the semiconducting range. Scanning electrochemical microscopy approach curve data support the substantial conductivity of these solids. Extensive physicochemical characterization of these materials is in complete accordance with the X-ray crystal structure of 1-acetonitrile-3-methylimidazolium tetracyanoquinodimethane, [AMim+][TCNQ1–], 4.


References

[1]  M. T. Azcondo, L. Ballester, S. Golhen, A. Gutierrez, L. Ouahab, S. Yartsev, P. Delhaes, J. Mater. Chem. 1999, 9, 1237.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtleru70%3D&md5=972cefe81931fc2cffb312b909a348b0CAS |

[2]  X. H. Qu, A. Nafady, A. Mechler, J. Zhang, A. R. Harris, A. P. O’Mullane, L. L. Martin, A. M. Bond, J. Solid State Electrochem. 2008, 12, 739 and references cited therein.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  D. Jérome, Chem. Rev. 2004, 104, 5565.
         | Crossref | GoogleScholarGoogle Scholar | 15535660PubMed |

[4]  P. Cea, S. Martin, A. Villares, D. Mobius, M. C. Lopez, J. Phys. Chem. B 2006, 110, 963.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlagu7vK&md5=2ca6174239a3e09e1986941a73d48a5eCAS | 16471630PubMed |

[5]  Y. Morita, T. Murata, K. Fukui, S. Yamada, K. Sato, D. Shiomi, T. Takui, H. Kitagawa, H. Yamochi, G. Saito, K. Nakasuji, J. Org. Chem. 2005, 70, 2739.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhvVSisbk%3D&md5=c77a09e2470eba80dafe5260961dbfc0CAS | 15787567PubMed |

[6]  J. S. Miller, A. J. Epstein, W. M. Reiff, Chem. Rev. 1988, 88, 201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXos1CjtA%3D%3D&md5=924ba743fd7404b8fe6945b3cd0c566bCAS |

[7]  D. S. Acker, R. J. Harder, W. R. Hertler, W. Mahler, L. R. Melby, R. E. Benson, W. E. Mochel, J. Am. Chem. Soc. 1960, 82, 6408.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXnsF2jsQ%3D%3D&md5=d51b9201355b289b958a30eb060e5cffCAS |

[8]  G. X. Liu, H. Xu, X. M. Ren, W. Y. Sun, CrystEngComm 2008, 10, 1574.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlGltLbL&md5=93500889973b089f2318cefa3ee90e43CAS |

[9]  R. Muller, S. Jonge, K. Myny, D. J. Wouters, J. Genoe, P. Heremans, Solid-State Electron. 2006, 50, 601.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  T. Okamoto, M. Kozaki, M. Doe, M. Uchida, G. F. Wang, K. Okada, Chem. Mater. 2005, 17, 5504.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVequrfN&md5=59f74bf473f6f23b019a8a450d3a4526CAS |

[11]  T. J. Wooster, A. M. Bond, Analyst 2003, 128, 1386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVOitrs%3D&md5=f46c61a714a7db6c86afc2df9120a101CAS | 14700234PubMed |

[12]  T. J. Wooster, A. M. Bond, M. J. Honeychurch, Anal. Chem. 2003, 75, 586.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhs1ar&md5=7b0bab68cddca3230ac2a431349877d4CAS | 12585488PubMed |

[13]  G. B. Gardner, D. Venkataraman, J. S. Moore, S. Lee, Nature 1995, 374, 792.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlt1Orsr8%3D&md5=e60bf62ad19f968fad9890f8573d805bCAS |

[14]  D. Venkataraman, G. B. Gardner, S. Lee, J. S. Moore, J. Am. Chem. Soc. 1995, 117, 11600.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXovF2gtrg%3D&md5=2e774a7ca837099bbf0793a9e6cec44cCAS |

[15]  O. M. Yaghi, G. M. Li, H. L. Li, Nature 1995, 378, 703.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtVSnt7rP&md5=918be4222e4dd70cf31be44fbbd6b451CAS |

[16]  W. J. Wang, I. W. Chuang, Synth. Met. 1993, 56, 1956.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVKrs7s%3D&md5=070900d6c8e01085bba576052ed6915eCAS |

[17]  W. J. Wang, M. J. Hu, C. S. Chang, K. S. Chuang, H. S. Chiu, C. F. Sheu, Synth. Met. 1999, 102, 1725.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksFKgurg%3D&md5=038331afbf01ade9fe3dc8ffbbe85cd1CAS |

[18]  V. Langer, K. Huml, G. Reck, Acta Crystallogr. B 1982, 38, 298.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  M. Sorm, P. Dedek, S. Nespurek, R. Kotva, H. Pivcova, Angewandte Makromol. Chem. 1991, 190, 201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltlOisL4%3D&md5=94c35a77e6a57f37607ae2579e7c1b2fCAS |

[20]  M. C. Grossel, P. B. Hitchcock, K. R. Seddon, T. Welton, S. C. Weston, Chem. Mater. 1994, 6, 1106.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsl2jsrk%3D&md5=b8db140b40fd57533c0cba8d4c8ba894CAS |

[21]  K. Nishimura, G. Saito, Synth. Met. 2005, 153, 385.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvVGrsLw%3D&md5=251cfc52407b68521ff33bc1d76da117CAS |

[22]  T. Murata, Y. Morita, Y. Yakiyama, Y. Yamamoto, S. Yamada, Y. Nishimura, K. Nakasuji, Cryst. Growth Des. 2008, 8, 3058.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFyhu78%3D&md5=7b5cd5011c3ca567bcb4c0dd5243383bCAS |

[23]  C. Zhao, A. M. Bond, J. Am. Chem. Soc. 2009, 131, 4279.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivF2qtLw%3D&md5=4025ef86d709083a588535beb10ffca2CAS | 19317503PubMed |

[24]  M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 2009, 8, 621.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFSisr0%3D&md5=1b9e71088c897fb71dc995ac768a8552CAS | 19629083PubMed |

[25]  A. A. Torriero, A. I. Siriwardana, A. M. Bond, I. M. Burgar, N. F. Dunlop, G. B. Deacon, D. R. MacFarlane, J. Phys. Chem. B 2009, 113, 11222.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovV2qu7Y%3D&md5=3ab30c37f16dab7949436208b717f901CAS | 19627093PubMed |

[26]  X. Qu, J. Lu, C. Zhao, J. F. Boas, B. Moubaraki, K. S. Murray, A. Siriwaradana, A. M. Bond, L. L. Martin, Angnew. Chem. Int. Edn. 2011, 50, 1589.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslygs7s%3D&md5=e3a36b32bba39537289183e538029212CAS |

[27]  M. Aletrari, P. Kanari, D. Partassides, E. Loizou, J. Pharm. Biomed. Anal. 1998, 16, 785.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsVKhurk%3D&md5=c3e7673386ef50251b942c5531b5bcbcCAS | 9535190PubMed |

[28]  J. Seebacher, M. Ji, H. Vahrenkamp, Eur. J. Inorg. Chem. 2004, 409.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCitr8%3D&md5=439fb4782d15daeff6b65eb06fec6636CAS |

[29]  M. M. Ibrahim, G. He, J. Seebacher, B. Benkmil, H. Vahrenkamp, Eur. J. Inorg. Chem. 2005, 4070.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Sntr3O&md5=fca4a159d7434d9f3e3391222473171dCAS |

[30]  J. Seebacher, M. H. Shu, H. Vahrenkamp, Chem. Commun. 2001, 1026.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1Grtr8%3D&md5=27061efcebc0080369d526462f8bd3b4CAS |

[31]  Z. Cao, X. Jiang, Q. Xie, S. Yao, Biosens. Bioelectron. 2008, 24, 222.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1KjtLw%3D&md5=fa5a7a731bbf69b5e917c106ade00fd9CAS | 18479905PubMed |

[32]  G. J. Ashwell, D. D. Eley, S. C. Wallwork, M. R. Willis, G. D. Welch, J. Woodward, Acta Crystallogr. B 1977, 33, 2258.
         | Crossref | GoogleScholarGoogle Scholar |

[33]  F. H. Herbstein, M. Kapon, Crystallogr. Rev. 2008, 14, 3.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslyqt7c%3D&md5=a9f45cc43fb12d3472a3702e4bfce979CAS |

[34]  S. Flandrois, D. Chasseau, Acta Crystallogr. B 1977, 33, 2744. 10.1107/S0567740877009406

[35]  T. J. Kistenmacher, T. J. Emge, A. N. Bloch, D. O. Cowan, Acta Crystallogr. B 1982, 38, 1193.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  W. L. Wallace, C. D. Jaeger, A. J. Bard, J. Am. Chem. Soc. 1979, 101, 4840.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXlsVyntbk%3D&md5=fbf135dbf23191684efe20c3c4ef857bCAS |

[37]  M. D. Ward, Electroanal. Chem. 1990, 16, 181.

[38]  T. Akutagawa, G. Saito, M. Kusunoki, K.-i. Sakaguchi, Bull. Chem. Soc. Jpn. 1996, 69, 2487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVSms70%3D&md5=20e3adb296a165112da7292ac447675dCAS |

[39]  B. R. Eggins, J. Q. Chambers, J. Electrochem. Soc. 1970, 117, 186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXosFGqsA%3D%3D&md5=74794bbf03fff089efcf468af95e4a39CAS |

[40]  A. M. Bond, Broadening Electrochemical Horizons: Principles and Illustration of Voltammetric and Related Techniques 2002, p. 334 (Oxford University Press: Oxford).

[41]  L. Gómez, R. Rodríguez-Amaro, Langmuir 2008, 24, 11246.
         | Crossref | GoogleScholarGoogle Scholar | 18785713PubMed |

[42]  A. M. Bond, S. Fletcher, P. G. Symons, Analyst 1998, 123, 1891.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVCju7k%3D&md5=174cf1f8afde0acab7121fc45ffdfc2aCAS |

[43]  A. Nafady, A. M. Bond, A. Bilyk, A. R. Harris, A. I. Bhatt, A. P. O’Mullane, R. De Marco, J. Am. Chem. Soc. 2007, 129, 2369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlemtr4%3D&md5=342120893dfaed176a5f263aab70490fCAS | 17263534PubMed |

[44]  G. Wittstock, M. Burchardt, S. E. Pust, Y. Shen, C. Zhao, Angew. Chem. Int. Ed. 2007, 46, 1584.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFeru70%3D&md5=223eb3e3cdcd31f46b04b120773cfcccCAS |

[45]  C. Zhao, I. Witte, G. Wittstock, Angew. Chem. Int. Ed. 2006, 45, 5469.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptVCqu7w%3D&md5=40cd5ad768eee0baef5b05f8acb61ebeCAS |

[46]  C. Zhao, G. Wittstock, Angew. Chem. Int. Ed. 2004, 43, 4170.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntF2jtrY%3D&md5=44d4f69882c0c9a4fe4211ea9741cfa5CAS |

[47]  J. R. Kirtley, J. Mannhart, Nat. Mater. 2008, 7, 520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnslKqs7o%3D&md5=c086ae3eead6b6b60773a6e610e36b52CAS | 18552848PubMed |

[48]  L. R. Melby, W. Mahler, W. E. Mochel, R. J. Harder, W. R. Hertler, R. E. Benson, J. Am. Chem. Soc. 1962, 84, 3374.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXosFKg&md5=0023bdec75b3e7f6dbb4dfc576671740CAS |

[49]  A. I. Siriwardana, I. R. Crossley, A. A. J. Torriero, I. M. Burgar, N. F. Dunlop, A. M. Bond, G. B. Deacon, D. R. MacFarlane, J. Org. Chem. 2008, 73, 4676.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksVOksLc%3D&md5=c53799a9067e4304a8e840faa4f62785CAS | 18402480PubMed |

[50]  G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
         | Crossref | GoogleScholarGoogle Scholar | 18156677PubMed |

[51]  L. J. Barbour, J. Supramol. Chem. 2001, 1, 189.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitlOlsb8%3D&md5=fc3f6a998cfbac2f24ae73aa634db36aCAS |