Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Unprecedented Mn(II)–Phosphate 3D Coordination Polymer with Novel pkb1 Topological Network Showing Spin-Canted Antiferromagnetism

Musheer Ahmad A , Manish K. Sharma A , Ruchi Singh A , Jerzy Mrozinski B and Parimal K. Bharadwaj A C
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Indian Institute of Technology Kanpur, 208016, India.

B Faculty of Chemistry, University of Wroclaw, 50-383 Wrocław, Poland.

C Corresponding author. Email: pkb@iitk.ac.in

Australian Journal of Chemistry 65(9) 1285-1290 https://doi.org/10.1071/CH12073
Submitted: 3 February 2012  Accepted: 6 March 2012   Published: 14 May 2012

Abstract

A novel Mn(II)phosphate coordination polymer, {Mn2.5(HPO4PO4)H2O)2}n, has been synthesized under solvothermal conditions. This is the first phosphate-based Mn(II) complex, which is obtained in excellent yield without using any external organic amine as a structure directing agent. The complex has a 3D non-interpenetrated unprecedented 5-nodal (5,5,6,6,7)-connected pkb1 topological network. It has been characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis (CHN analyzer and energy-dispersive X-ray spectroscopy), and thermogravimetry. Variable temperature magnetic susceptibility measurements indicate that the complex exhibits spin-canted antiferromagnetic behaviour at low temperature. The electron paramagnetic resonance measurements, at ambient and at low temperature, of the complex are also consistent with magnetic behaviour.


References

[1]  (a) A. K. Cheetham, T. Loiseau, G. Férey, Angew. Chem. Int. Ed. 1999, 38, 3268.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1yksbo%3D&md5=1b93f1ba7315ead48c2b234c2e97087cCAS |
      (b) S. Neeraj, S. Natarajan, C. N. R. Rao, New J. Chem. 1999, 23, 303.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) X. Luo, D. Luo, H. Zeng, M. Gong, Y. Chen, Z. Lin, Inorg. Chem. 2011, 50, 8697.
         | Crossref | GoogleScholarGoogle Scholar |

[2]     (a) R. M. Barrer, Hydrothermal Chemistry of Zeolites 1989 (Academic Press, New York).
         (b) W. H. Meier, D. H. Olson, C. Baerlocher, Atlas of Zeolite Structure Types 1996 (Elsevier, Boston).
      (c) S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannon, E. M. Flanigen, J. Am. Chem. Soc. 1982, 104, 6.
      (d) N. Guillou, Q. Gao, M. Nogues, R. E. Morris, M. Hervieu, G. Férey, A. K. Cheetham, Acad. Sci. Paris Ser. IIc 1999, 2, 387.

[3]  (a) K.-H. Lii, Y.-F. Huang, V. Zima, C.-Y. Huang, H.-M. Lin, Y.-C. Jiang, F.-L. Liao, S.-L. Wang, Chem. Mater. 1998, 10, 2599.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtVSksLY%3D&md5=5c9f368d997137fa76d915f50cd2fc46CAS |
      (b) Z. A. D. Lethbridge, P. Lightfoot, R. E. Morris, D. S. Wragg, P. A. Wright, A. Kvick, G. Vaughan, J. Solid State Chem. 1999, 142, 455.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. R. D. DeBord, W. M. Reiff, R. C. Haushalter, J. Zubieta, J. Solid State Chem. 1996, 125, 186.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J. R. D. DeBord, W. M. Reiff, C. J. Warran, R. C. Haushalter, J. Zubieta, Chem. Mater. 1997, 9, 1994.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) M. Cavellec, D. Riou, G. Ferey, J. Solid State Chem. 1994, 112, 441.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) M. Cavellec, D. Riou, J.-M. Greneche, G. Ferey, Zeolites 1996, 17, 250.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) M. Cavellec, C. Egger, J. Linares, M. Nogues, F. Varret, G. Ferey, J. Solid State Chem. 1997, 134, 349.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S.-L. Mikuriya, S. Kagawa, J. Chem. Soc., Chem. Commun. 1986, 1272.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) S. L. Brock, N. G. Duan, Z.-R. Tian, O. Giraldo, H. Zhou, S. L. Suib, Chem. Mater. 1998, 10, 2619.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  (a) P. Feng, X. Bu, G. D. Stucky, Nature 1997, 388, 735.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1GlsL4%3D&md5=e10c4fe790d5e2a478dfb7398c0d38c3CAS |
      (b) X. Bu, P. Fengand, G. D. Stucky, Science 1997, 278, 2080.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) S. Neeraj, M. L. Noy, A. K. Cheetham, Solid State Sci. 2002, 4, 397.
         | Crossref | GoogleScholarGoogle Scholar |

[5]     (a) R. Blinc, B. žekš, Soft Modes in Ferroelectrics and Antiferroelectrics 1974 (North-Holland Publishing Company: Amsterdam).
         (b) N. G. Parsonage, L. A. K. Staveley, Disorder in Crystals 1978 (Clarendon Press: Oxford).
         (c) C. N. R. Rao, K. J. Rao, Phase Transitions in Solids 1978 (McGraw-Hill: New York).

[6]  R. J. Van Wazer, Phosphorus and its Compounds – Volume I: Chemistry 1958 (Interscience: New York).

[7]  (a) T. Song, M. B. Hurshouse, J. Chen, J. Xu, K. M. A. Malik, R. H. Jones, R. Xu, J. M. Thomas, Adv. Mater. 1994, 6, 679.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVKitL8%3D&md5=e22021287b11d2e20c1a821b4af8e2b3CAS |
      (b) P. Feng, X. Bu, G. D. Stucky, Angew. Chem. Int. Ed. Engl. 1995, 34, 1745.
      (c) T. E. Gier, G. D. Stucky, Nature 1991, 349, 508.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) R. W. Broach, R. L. Bedard, S. G. Song, J. J. Pluth, A. Bram, C. Riekel, H.-P. Weber, Chem. Mater. 1999, 11, 2076.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) T. M. Nenoff, W. T. A. Harrison, T. E. Gier, G. D. Stucky, J. Am. Chem. Soc. 1991, 113, 378.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Y. Liu, L. Na, G. Zhu, F.-S. Xio, W. Pang, R. Xu, J. Solid State Chem. 2000, 149, 107.
         | Crossref | GoogleScholarGoogle Scholar |
      (g) X. Bu, P. Feng, T. E. Gier, G. D. Stucky, Zeolites 1997, 19, 200.
         | Crossref | GoogleScholarGoogle Scholar |
      (h) S. Neeraj, S. Natarajan, C. N. R. Rao, J. Solid State Chem. 2000, 150, 417.
         | Crossref | GoogleScholarGoogle Scholar |
      (i) S. Neeraj, S. Natarajan, Int. J. Inorg. Mater. 1999, 1, 317.
         | Crossref | GoogleScholarGoogle Scholar |
      (j) W. T. A. Harrison, M. L. F. Phillips, W. Clegg, S. J. Teat, J. Solid State Chem. 1999, 148, 433.
         | Crossref | GoogleScholarGoogle Scholar |
      (k) R. Vaidyanathan, S. Natarajan, C. N. R. Rao, J. Mater. Chem. 1999, 9, 2789.
         | Crossref | GoogleScholarGoogle Scholar |
      (l) W. T. A. Harrison, M. L. F. Phillips, Chem. Commun. 1996, 2771.
         | Crossref | GoogleScholarGoogle Scholar |
      (m) S. Neeraj, S. Natarajan, C. N. R. Rao, Chem. Mater. 1999, 11, 1390.
         | Crossref | GoogleScholarGoogle Scholar |
      (n) S. Neeraj, S. Natarajan, C. N. R. Rao, Chem. Commun. 1999, 165.
         | Crossref | GoogleScholarGoogle Scholar |
      (o) W. T. A. Harrison, Z. Bircsak, L. Hannooman, Z. Zhang, J. Solid State Chem. 1998, 136, 93.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  J. P. Collman, J. I. Brauman, J. P. Fitzgerald, P. D. Hampton, Y. Naruta, J. W. Sparapany, J. A. Ibers, J. Am. Chem. Soc. 1988, 110, 3477.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitFGhs7s%3D&md5=165aa76603494efa2c18740fba37bce4CAS |

[9]  Y. Niu, H. Hou, Y. Wei, Y. Fan, Y. Zhu, C. Du, X. Xin, Inorg. Chem. Commun. 2001, 4, 358.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkt1yhsbs%3D&md5=4a66066e367f6b2fe1247d60c9066d44CAS |

[10]  P. Lightfoot, A. K. Cheetham, J. Solid State Chem. 1989, 78, 17.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhvVCksLo%3D&md5=c46137f4279782ea266f92720dbc59c1CAS |

[11]     (a) The network topology was evaluated by the program TOPOS-4.0, see: http://www.topos.ssu.samara.ru; V. A. Blatov, IUCr CompComm Newsletter 2006, 7, 4.
      (b) V. A. Blatov, A. P. Shevchenko, V. N. Serezhkin, J. Appl. Crystallogr. 2000, 33, 1193.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. A. Blatov, M. O’Keeffe, D. M. Proserpio, CrystEngComm 2010, 12, 44.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  See Supplementary Material.

[13]  (a) M. E. Lines, J. Phys. Chem. Solids 1970, 31, 101.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXmtVOhtQ%3D%3D&md5=2b3778c30c60209615123a180fb37c4bCAS |
      (b) J. Darriet, M. S. Haddad, E. N. Duesler, D. N. Hendrickson, Inorg. Chem. 1979, 18, 2679.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) B.-P. Yang, A. V. Provirin, Y.-Q. Guo, J.-G. Mao, Inorg. Chem. 2008, 47, 1453.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  F. Palacio, Molecular Magnetism: From Molecular Assemblies to the Devices, NATO ASI Series 1995 (Kluwer: Dordrecht, The Netherlands).

[15]  E. König, Magnetic Properties of Coordination and Organometallic Transition Metal Compounds 1966 (Springer, Berlin).

[16]  International Tables for X-Ray Crystallography, Vol. III, 1952 (Kynoch Press: Birmingham, UK).

[17]  SAINT version 6.02 1999 (Bruker AXS: Madison, WI).

[18]  G. M. Sheldrick, SADABS: Empirical Absorption Correction Program 1997 (University of Göttingen: Göttingen, Germany).

[19]  XPREP version 5.1 1995 (Siemens Industrial Automation Inc.: Madison, WI).

[20]  G. M. Sheldrick, SHELXTL Reference Manual, version 5.1 1997 (Bruker AXS: Madison, WI).

[21]  G. M. Sheldrick, SHELXL-97: Program for Crystal Structure Refinement 1997 (University of Göttingen: Göttingen, Germany).