Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Convenient Ambient Temperature Generation of Sulfonyl Radicals

Kerry Gilmore A , Brian Gold A , Ronald J. Clark A and Igor V. Alabugin A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.

B Corresponding author. Email: alabugin@chem.fsu.edu

Australian Journal of Chemistry 66(3) 336-340 https://doi.org/10.1071/CH12499
Submitted: 7 November 2012  Accepted: 12 December 2012   Published: 16 January 2013

Abstract

Presented herein is a novel method for the efficient, ambient temperature generation of sulfonyl radicals from aryl and alkyl sulfonylbromides upon autoxidation of triethylborane (Et3B). The resultant radicals were regioselectively trapped via addition to terminal alkynes, generating a secondary vinyl radical that selectively abstracts a Br atom from RSO2Br, yielding the (E)-bromo vinylsulfones. Sensitivity towards Lewis basic groups was observed, presumably due to the disruptive coordination to Et3B before atom-transfer.


References

[1]     (a) For general discussion of synthetic utility of radical reactions, see: D. P. Curran, N. A. Porter, B. Giese, Stereochemistry of Radical Reactions 1996 (VCH: Weinheim).
      (b) A. Gansauer, H. Bluhm, Chem. Rev. 2000, 100, 2771.
         | CrossRef |
         (c) Radicals in Organic Synthesis (Eds P. Renaud, M. P. Sibi) 2001 (Wiley-VCH: Weinheim).
      (d) M. P. Sibi, S. Manyem, J. Zimmerman, Chem. Rev. 2003, 103, 3263.
         | CrossRef |

[2]  (a) Selected examples of radical cascades for the preparation of conjugated carbon-rich materials: P. Byers, I. V. Alabugin, J. Am. Chem. Soc. 2012, 134, 9609.
         | CrossRef | 1:CAS:528:DC%2BC38XnsVeqsr8%3D&md5=831351676798050cf6123e07a7ecbb4eCAS |
      (b) I. V. Alabugin, K. Gilmore, S. Patil, S. M. Manoharan, S. V. Kovalenko, R. J. Clark, I. Ghiviriga, J. Am. Chem. Soc. 2008, 130, 11535.
         | CrossRef |

[3]     (a) C. Chatgilialoglu, M. P. Bertrand, C. Ferreri, in S-Centered Radicals (Ed. Z. B. Alfassi) 1999, p. 311 (John Wiley & Sons, Inc.: New York, NY).
      (b) C. Chatgilialoglu, O. Mozziconacci, M. Tamba, K. Bobrowski, G. Kciuk, M. P. Bertrand, S. Gastaldi, V. I. Timokhin, J. Phys. Chem. A 2012, 116, 7623.
         | CrossRef |

[4]  M. P. Bertrand, Org. Prep. Proced. Int. 1994, 26, 257.
         | CrossRef | 1:CAS:528:DyaK2cXktlCnsrg%3D&md5=e8e15a9189e6b1a01b8d92ebfe4db196CAS |

[5]  (a) I. De Riggi, J. M. Surzur, M. P. Bertrand, A. Archavlis, R. Faure, Tetrahedron 1990, 46, 5285.
         | CrossRef | 1:CAS:528:DyaK3MXlvFKq&md5=b27edfdf680983f057dff5eb496590a7CAS |
      (b) T. Taniguchi, A. Idota, H. Ishibashi, Org. Biomol. Chem. 2011, 9, 3151.
         | CrossRef |
      (c) S. Caddick, D. Hamza, S. N. Wadman, Tetrahedron Lett. 1999, 40, 7285.
         | CrossRef |

[6]  I. V. Alabugin, V. I. Timokhin, J. N. Abrams, M. Manoharan, R. Abrams, I. Ghiviriga, J. Am. Chem. Soc. 2008, 130, 10984.
         | CrossRef | 1:CAS:528:DC%2BD1cXptVGis7w%3D&md5=0b8f05261ee529427646a7b778cfa835CAS |

[7]  (a) The regioselectivity of the ring closure was intriguing due to the fact that the activation barriers of the competing 4-exo/5-endo-dig closures are within 1–2 kcal mol–1: I. V. Alabugin, M. Manoharan, J. Am. Chem. Soc. 2005, 127, 9534.
         | CrossRef | 1:CAS:528:DC%2BD2MXltVymt7s%3D&md5=09247eeb2c7c2d97e13ce216ece15afcCAS |
      (b) Similar σ-vinylexo radical yielded mostly 4-exo-dig products: S.-I. Fujiwara, Y. Shimizu, Y. Imahori, M. Toyofuku, T. Shin-ike, N. Kambe, Tetrahedron Lett. 2009, 50, 3628.
         | CrossRef |

[8]  (a) The regioselectivity of the competing 4-exo/5-endo-dig closures is finely balanced: Anionic closures: K. Gilmore, M. Manoharan, J. I.-C. Wu, P. V. R. Schleyer, I. V. Alabugin, J. Am. Chem. Soc. 2012, 134, 10584.
         | CrossRef | 1:CAS:528:DC%2BC38Xnt1Wqsrw%3D&md5=d75c7a0b3f66977c2d2154fdcc12fc80CAS |
         (b) Radical closures: K. Gilmore, I. V. Alabugin, in Unusual Cyclizations: Encyclopedia of Radicals in Chemistry, Biology and Materials (Eds C. Chatgilialoglu, A. Studer) 2012, pp. 693–728 (John Wiley & Sons Ltd: Chichester).
      (c) C. Chatgilialoglu, C. Ferreri, M. Guerra, G. Froudakis, T. Gimisis, J. Am. Chem. Soc. 2002, 124, 10765.
         | CrossRef |

[9]  M. Tamba, K. Dajka, C. Ferreri, K.-D. Asmus, C. Chatgilialoglu, J. Am. Chem. Soc. 2007, 129, 8716.
         | CrossRef | 1:CAS:528:DC%2BD2sXms12gur8%3D&md5=267cc594803660480a7c2e1267509e5dCAS |

[10]  (a) Ru catalyst: L. Quebatte, K. Thommes, K. Severin, J. Am. Chem. Soc. 2006, 128, 7440.
         | CrossRef | 1:CAS:528:DC%2BD28XkvVehtrg%3D&md5=f3b1e2efb5d24b4705fb8b06dddee7ecCAS |
      (b) Cu catalyst: J. M. Muñoz-Molina, T. R. Belderrain, P. J. Pérez, Inorg. Chem. 2010, 49, 642.
         | CrossRef |

[11]  Y. Amiel, J. Org. Chem. 1971, 36, 3697.
         | CrossRef | 1:CAS:528:DyaE38XisVGgtQ%3D%3D&md5=21619deea277579eef82accd057f527fCAS |

[12]  (a) Sulfonyl cyanides: R. G. Pews, T. E. Evans, Chem. Commun. 1971, 1397.
         | 1:CAS:528:DyaE38Xjtl2hsw%3D%3D&md5=3ff52d0000ac3578d583fe340073f9f4CAS |
      (b) J.-M. Fang, M.-Y. Chen, Tetrahedron Lett. 1987, 28, 2853.
         | CrossRef |
      (c) J.-M. Fang, M.-Y. Chen, M.-C. Cheng, G.-H. Lee, S.-M. Peng, J. Chem. Research (S) 1989, 272.
      (d) Selenosulfonates: T. G. Back, S. Collins, Tetrahedron Lett. 1980, 21, 2213.
         | CrossRef |
      (e) R. A. Gancarz, J. L. Kice, J. Org. Chem. 1981, 46, 4899.
         | CrossRef |
      (f) R. A. Gancarz, R. A. Kice, Tetrahedron Lett. 1980, 21, 4155.
         | CrossRef |
      (g) T. G. Back, S. Collins, J. Org. Chem. 1981, 46, 3249.
         | CrossRef |

[13]  (a) X. Liu, X. Duan, Z. Pan, Y. Han, Y. Liang, Synlett 2005, 11, 1752.
      (b) For general Cu-catalysed ATRA reactions requiring reductants, see W. T. Eckenhoff, S. T. Garrity, T. Pinauer, Eur. J. Inorg. Chem. 2008, 563.
         | CrossRef |
      (c) W. T. Eckenhoff, T. Pinauer, Catal. Rev. 2010, 52, 1.
         | CrossRef |

[14]  (a) Y. Amiel, Tetrahedron Lett. 1971, 12, 661.
         | CrossRef |
      (b) Y. Amiel, J. Org. Chem. 1971, 36, 3691.
         | CrossRef |
      (c) Iron-catalysed: X. Zeng, L. Ilies, E. Nakamura, Org. Lett. 2012, 14, 954.
         | CrossRef |

[15]  I. V. Alabugin, M. Manoharan, J. Am. Chem. Soc. 2005, 127, 12583.
         | CrossRef | 1:CAS:528:DC%2BD2MXpt1WisLo%3D&md5=e65afa1550e6a078b25bdbb49d04f1d4CAS |

[16]  (a) A. G. Davies, B. P. Roberts, J. Chem. Soc. Chem. Commun. 1966, 298.
         | 1:CAS:528:DyaF28Xkt1yqs7k%3D&md5=93bfd04e817bc8f7d96b144bf6cd2537CAS |
      (b) P. G. Allies, P. B. Brindley, J. Chem. Soc. B 1969, 1126.
         | CrossRef |
      (c) A. G. Davies, B. P. Roberts, J. Chem. Soc. Chem. Commun. 1969, 699.
      (d) P. J. Krusic, J. K. Kochi, J. Am. Chem. Soc. 1969, 91, 3942.
         | CrossRef |
      (e) R. Rensch, H. Friebolin, Chem. Ber. 1977, 110, 2189.
         | CrossRef |
      (f) For a review on the topic see: C. Ollivier, P. Renaud, Chem. Rev. 2001, 101, 3415.
         | CrossRef |

[17]  (a) K. Nozaki, K. Oshima, K. Utimoto, J. Am. Chem. Soc. 1987, 109, 2547.
         | CrossRef | 1:CAS:528:DyaL2sXitFCjtLo%3D&md5=5a85daa38b231d496f137cb6ff37f118CAS |
      (b) K. Nozaki, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1987, 60, 3465.
         | CrossRef |
      (c) K. Nozaki, K. Oshima, K. Utimoto, Tetrahedron 1989, 45, 923.
         | CrossRef |
      (d) J. Marco-Contelles, Synth. Commun. 1997, 27, 3163.
         | CrossRef |

[18]  (a) K. Miura, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1993, 66, 2356.
         | CrossRef | 1:CAS:528:DyaK2cXhtVOisL4%3D&md5=382153d30e525e0c0c848ddfb6a7f54bCAS |
      (b) K. Miura, K. Oshima, K. Utimoto, Bull. Chem. Soc. Jpn. 1993, 66, 2348.
         | CrossRef |

[19]  Y. Ichinose, K. Wakamatsu, K. Nozaki, J.-L. Birbaum, K. Oshima, K. Utimoto, Chem. Lett. 1987, 16, 1647.
         | CrossRef |

[20]  (a) Y. Ichinose, K. Nozaki, K. Wakamatsu, K. Oshima, K. Utimoto, Tetrahedron Lett. 1987, 28, 3709.
         | CrossRef | 1:CAS:528:DyaL1cXlt12itb4%3D&md5=0fbad5691d49b69b74be3afaf2f684baCAS |
      (b) S. Tanaka, T. Nakamura, H. Yorimitsu, H. Shinokubo, K. Oshjima, Org. Lett. 2000, 2, 1911.
         | CrossRef |
      (c) M. Taniguchi, K. Oshjima, K. Utimoto, Chem. Lett. 1993, 22, 1751.
         | CrossRef |

[21]  (a) G. Lapointe, A. Kapat, K. Weidner, P. Renaud, Pure Appl. Chem. 2012, 84, 1633.
         | CrossRef | 1:CAS:528:DC%2BC38XhtVGltrbF&md5=b5c108c96be1d6c977d119501cc02981CAS |
      (b) A. Kapat, A. Konig, F. Montermini, P. Renaud, J. Am. Chem. Soc. 2011, 133, 13890.
         | CrossRef |
      (c) G. Lapointe, K. Schenk, P. Renaud, Org. Lett. 2011, 13, 4774.
         | CrossRef |
      (d) G. Lapointe, K. Schenk, P. Renaud, Chem. – Eur. J. 2011, 17, 3207.
         | CrossRef |
      (e) M. Luthy, V. Darmency, P. Renaud, Eur. J. Org. Chem. 2011, 547.
         | CrossRef |
      (f) K. Weidner, A. Giroult, P. Panchaud, P. Renaud, J. Am. Chem. Soc. 2010, 132, 17511.
         | CrossRef |
      (g) S. Cren, P. Schar, P. Renaud, K. Schenk, J. Org. Chem. 2009, 74, 2942.
         | CrossRef |
      (h) N. Mantrand, P. Renaud, Tetrahedron 2008, 64, 11860.
         | CrossRef |
      (i) A.-P. Schaffner, F. Montermini, D. Pozzi, V. Darmency, E. M. Scanlan, P. Renaud, Adv. Synth. Catal. 2008, 350, 1163.
         | CrossRef |
      (j) E. Nyfeler, P. Renaud, Org. Lett. 2008, 10, 985.
         | CrossRef |
      (k) L. Chabaud, Y. Landais, P. Renaud, F. Robert, F. Castet, M. Lucarini, K. Schenk, Chem. – Eur. J. 2008, 14, 2744.
         | CrossRef |

[22]  (a) A. G. Davies, B. P. Roberts, Acc. Chem. Res. 1972, 5, 387.
         | CrossRef | 1:CAS:528:DyaE3sXivVKlsw%3D%3D&md5=8f52d9156e098fbe2fbd58fc65382115CAS |
      (b) A. G. Davies, B. P. Roberts, B. R. Sanderson, J. Chem. Soc., Perkin Trans. 2 1973, 626.
         | CrossRef |

[23]  (a) Y. Amiel, J. Org. Chem. 1974, 39, 3867.
         | CrossRef | 1:CAS:528:DyaE2MXhs1CltQ%3D%3D&md5=53ce45f4f43a6c6a3ce03ca46465b5e4CAS |
      (b) These compounds also receive increasing attention as radical polymerisation initiators: C. Grigoras, V. Percec, J. Polym. Sci. A 2005, 43, 319.
         | CrossRef |

[24]  (a) S. Caddick, C. L. Sering, S. N. Wadman, Chem. Commun. 1997, 171.
         | CrossRef | 1:CAS:528:DyaK2sXhtF2rsLw%3D&md5=29825daccef5760778a194f883b02a44CAS |
      (b) Cyclisations of bis-allenes: S.-K. Kang, Y.-H. Ha, D.-H. Kim, Y. Lim, J. Jung, Chem. Commun. 2001, 14, 1306.
         | CrossRef |

[25]  M. J. Frish, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 03, Revision E.01 2004 (Gaussian, Inc.: Wallingford, CT).

[26]  The singly occupied orbital can serve as both the electron donor and acceptor. According to NBO analysis, the donor character dominates as follows from the relative energies of n→σ*C-S (17.8 and 9.0 kcal mol–1 for α and β spins, respectively) and σC-S →n (<0.5 and 6.6) interactions (for the adduct of tosyl radical and 1-hexyne). The vinyl radical of the phenylacetylene additions displayed an unusual Lewis structure (hypervalent carbon) which precluded the analysis of hyperconjugative interactions.

[27]  For a more general discussion of hyperconjugative effects in chemistry, see: I. V. Alabugin, K. Gilmore, P. Peterson, WIREs Comput. Mol. Sci. 2011, 1, 109.
         | CrossRef | 1:CAS:528:DC%2BC3MXksVKjsb8%3D&md5=2facdcdaa0b2339045dbb928897e7a31CAS |

[28]  G. W. Kabalka, H. C. Brown, A. Suzuki, S. Honma, A. Arase, M. Itoh, J. Am. Chem. Soc. 1970, 92, 710.
         | CrossRef | 1:CAS:528:DyaE3cXpvFOltg%3D%3D&md5=b68acb766c89eacfd32c05b9d0a3e979CAS |

[29]  1H NMR spectra match literature data. B. Gaspar, E. M. Carreira, Angew. Chem. Int. Ed. 2008, 47, 5758.
         | CrossRef | 1:CAS:528:DC%2BD1cXpsFKrsr4%3D&md5=0b6fa37b76b388150941756c134c44fbCAS |

[30]  Et3B/O2-induced thioyl radical addition to alkenes has also been reported, see: H. Rahaman, M. Ueda, O. Miyata, T. Naito, Org. Lett. 2009, 11, 2651.
         | CrossRef | 1:CAS:528:DC%2BD1MXmtVGmu7k%3D&md5=a5cd4f55a5567febc010388de2e45e8cCAS |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (362 KB) Export Citation Cited By (14)