Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis, CMC Determination, and Outer Sphere Electron Transfer Reaction of the Surfactant–Complex Ion, cis-[Co(en)2(4CNP)(DA)]3+ with [Fe(CN)6]4– in Micelles, β-cyclodextrin, and Liposome (Dipalmidoylphosphotidylcholine) Vesicles

Karuppiah Nagaraj A and Sankaralingam Arunachalam A B
+ Author Affiliations
- Author Affiliations

A School of Chemistry, Bharathidasan University, Trichirappalli 620024, Tamilnadu, India.

B Corresponding author. Email: arunasurf@yahoo.com

Australian Journal of Chemistry 66(8) 930-937 https://doi.org/10.1071/CH13099
Submitted: 30 January 2013  Accepted: 26 April 2013   Published: 3 June 2013

Abstract

The surfactant cobalt(iii) complex, cis-[Co(en)2(4CNP)(DA)](ClO4)3, en = ethylenediamine, 4CNP = 4-cyanopyridine, DA = dodecylamine, was synthesized and characterized by physico-chemical and spectroscopic methods. The critical micelle concentration value of this complex was obtained from the conductivity measurements at different temperatures to evaluate, ΔGm0, ΔHm0, and ΔSm0. The kinetics of outer sphere electron transfer reaction of this complex with Fe(CN)64– ion in micelles, β-cyclodextrin as well as in liposome vesicles media were studied. The rate constant increases with increase in the concentration of micelles but decreases in presence of β-cyclodextrin, which is a good structure breaker of micelles. In liposome vesicles media the rate constant is different at below and above phase transition temperature. The results have been explained based on the hydrophobic effect, the presence of pyridine ligand containing 4-cyano substituent and the reactants with opposite charge.


References

[1]  O. A. Babich, E. S. Gould, Inorg. Chim. Acta 2002, 336, 80.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xltlegu70%3D&md5=a4cdd5c425cdd15d98fa5e74c3ba7e29CAS |

[2]  K. Szacilowski, Chem.–Eur. J. 2004, 10, 2520.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFCrt74%3D&md5=200e58b6bc94d1f95571af0a8cee674fCAS | 15146524PubMed |

[3]  A. J. Miralles, R. E. Armstrong, A. Haim, J. Am. Chem. Soc. 1977, 99, 1416.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXht1yjtro%3D&md5=b2cbc0a10c41554cb2a69ba482b382a8CAS |

[4]  A. J. Miralles, A. P. Szecsy, A. Haim, Inorg. Chem. 1982, 21, 697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlvVGntA%3D%3D&md5=3c76f53c176cfcd86241ed85c2fe3fadCAS |

[5]  A. A. Holder, T. P. Dasgupta, Inorg. Chim. Acta 1981, 103, 1679.

[6]  D. Gaswick, A. Haim, J. Am. Chem. Soc. 1971, 93, 7347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltVGqtw%3D%3D&md5=d7bfc6c4be4069c6384a42308f326164CAS |

[7]  A. J. Miralles, A. P. Szecsy, A. Haim, Inorg. Chem. 1982, 21, 697.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlvVGntA%3D%3D&md5=3c76f53c176cfcd86241ed85c2fe3fadCAS |

[8]  A. R. Mustafina, V. G. Shtyrin, L. Y. Zakharova, V. V. Skripacheva, R. R. Zairov, S. E. Soloreva, I. S. Antipen, A. I. Konovalov, J. Incl. Phenom. Macrocycl. Chem. 2007, 59, 25.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCgtrbJ&md5=c93e7bd40ca0aecc0ebf7b87a374b59aCAS |

[9]  K. Weidemaier, H. L. Tavernier, M. D. Fayer, J. Phys. Chem. B 1997, 101, 9352.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVaktrg%3D&md5=aeba6bc68b8dc73464a3a482f290a9bcCAS |

[10]  H. L. Tavernier, A. V. Barzykin, M. Tachiya, M. D. Fayer, J. Phys. Chem. B 1998, 102, 6078.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXksVOjt7Y%3D&md5=b9ccce43350bb92efb61ff7a02168ff0CAS |

[11]  L. Hammarström, T. Norrby, G. Stenhagen, J. Martensson, B. Kermark, M. Almgren, J. Phys. Chem. B 1997, 101, 7494.
         | Crossref | GoogleScholarGoogle Scholar |

[12]  X. L. Wang, H. Chao, H. Li, X.-L. Hong, Y.-J. Liu, L.-F. Tan, L.-N. Ji, J. Inorg. Biochem. 2004, 98, 1143.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVCmt7Y%3D&md5=2d3cc02f4a606d941384b5f0d769f32bCAS | 15149826PubMed |

[13]  L. N. Ji, X. H. Zou, J. G. Liu, Coord. Chem. Rev. 2001, 216–217, 513.
         | Crossref | GoogleScholarGoogle Scholar |

[14]  S. Srinivasan, J. Annaraj, R. Athappan, J. Inorg. Biochem. 2005, 99, 876.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCkur8%3D&md5=71dba6f0e3b3e351a4440f0a6dbb42e7CAS | 15708809PubMed |

[15]  R. Prado-Gotor, R. Jiminez, P. Lopez, C. Perez, F. Gómez-Herrera, F. Sanchez, Langmuir 1998, 14, 1539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhslKmtrk%3D&md5=868a081c14182a3491bdb1086cc7b5e0CAS |

[16]  P. J. Cameron, L. M. Peter, S. M. Zakeeruddin, M. Gratzel, Coord. Chem. Rev. 2004, 248, 1447.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFGnurg%3D&md5=85f4548eda5e82390bd18116f471d663CAS |

[17]  A. Chonn, P. R. Cullis, Curr. Opin. Biotechnol. 1995, 6, 698.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVSrtLY%3D&md5=46c0bde5bf76e360e198e2dfea821855CAS | 8527843PubMed |

[18]  R. Pignatello, T. Musumeci, L. Basile, C. Carbone, G. Puglisi, J. Pharm. Bioall. Sci. 2011, 3, 4.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslWmsr4%3D&md5=e65c031c4ccb41cda3e57f6cefa88ff4CAS |

[19]  H. G. Li, Q. Zhang, Q. Zhao, M. Liu, J. Liu, D. Z. Sun, Indian J. Chem. 2010, 49A, 752.
         | 1:CAS:528:DC%2BC3cXpvVOgtro%3D&md5=907eb15ecc220d5234364c56b078beb2CAS |

[20]  H. S. Choi, T. Ooya, S. Sasaki, N. Yui, Macromolecules 2003, 36, 5342.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXks12mt7o%3D&md5=b3d1cbc2ea115fa2109691babc34eaebCAS |

[21]  C. A. Behm, I. Creaser, B. Daszkiewicz, R. J. Geue, A. M. Sargeson, G. W. Walker, J. Chem. Soc. Chem. Commun. 1993, 24, 1844.
         | Crossref | GoogleScholarGoogle Scholar |

[22]  P. V. Bernhardt, J. M. Harrowfield, Y. Kim, Y. H. Lee, Y. C. Park, A. Sujandi, Bull. Korean Chem. Soc. 2007, 28, 4.

[23]  G. Ghirlanda, P. Scrimin, P. Tecilla, A. Toffoletti, Langmuir 1998, 14, 1646.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhslKmu78%3D&md5=bb404b389b7d0c3678487936639c278bCAS |

[24]  M. N. Arumugam, K. Santhakumar, S. Arunachalam, Asian. J. Chem. 2003, 15, 191.

[25]  M. N. Arumugam, S. Arunachalam, Indian J. Chem. 1997, 36A, 84.
         | 1:CAS:528:DyaK2sXitV2jsbk%3D&md5=713c485ed4bfcb9cb954393504562eaaCAS |

[26]  K. Santhakumar, N. Kumaraguru, S. Arunachalam, M. N. Arumugam, Trans. Met. Chem. 2006, 31, 62.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1WqsQ%3D%3D&md5=5353acdf8a3fb2b2585e14914eeba3d9CAS |

[27]  K. Sasikala, S. Arunachalam, Colloids Surf. A Physicochem. Eng. Asp. 2009, 335, 98.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVCmsg%3D%3D&md5=a0f98c9ba44fdb167d14cec4d41914a3CAS |

[28]  K. Nagaraj, S. Arunachalam, Trans. Met. Chem. 2012, 37, 423.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVegsLk%3D&md5=f17365010fdf1c78e54074c55425bd5fCAS |

[29]  S. C. Chan, F. Leh, J. Chem. Soc. 1960, 4369.

[30]  D. A. Buckingham, D. Jones, Inorg. Chem. 1965, 4, 1387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2MXks1yis7w%3D&md5=6d3147a4fbdd56396e0ed8e998d6c470CAS |

[31]  M. E. Baldwin, J. Chem. Soc. 1960, 848, 4369.
         | Crossref | GoogleScholarGoogle Scholar |

[32]  E. B. Kipp, R. A. Haines, Can. J. Chem. 1969, 47, 1073.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXot1Gktg%3D%3D&md5=d809d2fea0b5b20ac1b6757366b6111bCAS |

[33]  M. L. Morris, D. H. Busch, J. Am. Chem. Soc. 1960, 82, 1521.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3cXnvVOjtg%3D%3D&md5=276b46f4e654c5f6d81c27f5f486a0a1CAS |

[34]  M. R. Rosenthal, J. Chem. Educ. 1973, 50, 331.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXktFaqtLY%3D&md5=d942f792147c5c201b78299a51c84abfCAS |

[35]  P. Mukerjee, J. Phys. Chem. 1962, 66, 1375.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XksFeitLo%3D&md5=c4cd232952c9ae4a560588e7e2e29ab6CAS |

[36]  J. J. Galán, A. G. Perez, J. R. Rodriguez, J. Therm. Anal. Calorim. 2003, 72, 465.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  A. González-Pérez, J. Del Castillo, J. Czapkiewicz, J. Rodríguez, Colloid Polym. Sci. 2002, 280, 503.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  R. Zana, J. Colloid Interface Sci. 1980, 78, 330.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXntF2quw%3D%3D&md5=f5af458565a91e12acdba3ef5be7108dCAS |

[39]  J. J. H. Nusselder, J. B. F. N. Engberts, J. Colloid Interface Sci. 1992, 148, 353.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmvVSitg%3D%3D&md5=b8737b75635ca94ab07d98e462ef2463CAS |

[40]  N. Kumaraguru, S. Arunachalam, M. N. Arumugam, K. Santhakumar, Trans. Met. Chem. (Weinh.) 2006, 31, 250.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsFCrsrw%3D&md5=3829bbe20b4f4b009a5812ba0462bb51CAS |

[41]  K. Santhakumar, N. Kumaraguru, M. N. Arumugam, S. Arunachalam, Polyhedron 2006, 25, 1507.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVans7c%3D&md5=d52bb8f1e7b2561818b2ac3cd2c5ffdaCAS |

[42]  D. Gaswick, A. Haim, J. Am. Chem. Soc. 1971, 93, 7347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38XltVGqtw%3D%3D&md5=d7bfc6c4be4069c6384a42308f326164CAS |

[43]  B. Baensch, P. Martinez, R. Van Eldick, J. Phys. Chem. 1992, 96, 234.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkslSqtg%3D%3D&md5=fb9d4ecd1f6372a174d0a3cdaf851ef8CAS |

[44]  R. L. VanEtten, J. F. Sebastian, G. A. Clowes, M. L. Bender, J. Am. Chem. Soc. 1967, 89, 3242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXks1Whs7o%3D&md5=5f39b7baab9229491b9b2995622352f7CAS |

[45]  O. S. Tee, A. A. Federtchenko, P. G. Loncke, T. A. Gadosy, J. Chem. Soc. Perkin Trans 1996, 2, 1243.

[46]  Y. Matsui, T. Nishioka, T. Fujita, Top. Curr. Chem. 1985, 128, 61.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXltlOhsbk%3D&md5=0b994388fd974fba3bf13f05e5b6727bCAS |

[47]  R. R. C. New, Liposomes a Practical Approach 1990 (Oxford University Press: London) and references there in.

[48]  U. Subuddhi, A. K. Mishra, Photochem. Photobiol. Sci. 2006, 5, 283.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVKntLc%3D&md5=1f1dffad154d18595da3671254214793CAS | 16520863PubMed |

[49]  R. M. Watwe, J. R. Bellare, Curr. Sci. 1995, 68, 715.
         | 1:CAS:528:DyaK2MXmtFaitLw%3D&md5=a7ab51d06088596c70d3bb0b338efa78CAS |

[50]  O. Miyashita, P. G. Wolynes, J. N. Onuchic, J. Phys. Chem. B 2005, 109, 1959.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis12gtg%3D%3D&md5=48dfb275ca905b8f13ae69ea112dce95CAS | 16851180PubMed |

[51]  A. M. Ismail, Indian J. Chem. 2008, 47, 49.