Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH FRONT

Mass Spectrometry and its Applications in Life Sciences

Costel C. Darie
+ Author Affiliations
- Author Affiliations

Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5810, USA. Email: cdarie@clarkson.edu




Dr Costel C. Darie is a biochemist and currently Assistant Professor and leader of the Biochemistry and Proteomics Group within the Department of Chemistry and Biomolecular Science at Clarkson University. He received his B.S. and M.S. in biochemistry from Iasi, Romania, and his Ph.D. in biochemistry from Freiburg, Germany. Dr Darie's main research interests are in new proteomics approaches for biomarker discovery and identification of post-translational modifications and protein–protein interactions. His research is also focussed on the investigation of one particular protein – the tumour differentiation factor protein.

Australian Journal of Chemistry 66(7) 719-720 https://doi.org/10.1071/CH13284
Published: 24 July 2013

Abstract

Deciphering the biological and clinical significance of the proteins is investigated by mass spectrometry in a relatively new field, named proteomics. Mass spectrometry is, however, also used in chemistry for many years. In this Research Front we try to show the potential use of mass spectrometry in chemical, environmental and biomedical research and also to illustrate the applications of mass spectrometry in proteomics.


References

[1]  R. Aebersold, M. Mann, Nature 2003, 422, 198.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFKgs7s%3D&md5=5bca9334fa0a1d79721bb915fee77311CAS | 12634793PubMed |

[2]  M. Mann, Nat. Rev. Mol. Cell. Biol. 2006, 7, 952.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1KisrrF&md5=b4fc6c071b63dd7c17fa63f0e6686fb6CAS | 17139335PubMed |

[3]  D. S. Spellman, K. Deinhardt, C. C. Darie, M. V. Chao, T. A. Neubert, Mol. Cell. Proteomics 2008, 7, 1067.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1ynsbg%3D&md5=ebed1e28768a3211b4fadc76f934f8efCAS | 18256212PubMed |

[4]  M. E. Mason, J. L. Koch, M. Krasowski, J. Loo, Proteome Sci. 2013, 11, 2.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslyku78%3D&md5=8901f1ca593705f27de351782f437183CAS | 23317283PubMed |

[5]  A. G. Ngounou Wetie, I. Sokolowska, A. G. Woods, U. Roy, J. A. Loo, C. C. Darie, Proteomics 2013, 13, 538.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSmu7k%3D&md5=403ca867a3f1594bbfa3dbd5b8a134e2CAS | 23193082PubMed |

[6]  V. B. Wang, S. L. Chua, B. Cao, T. Seviour, V. J. Nesatyy, E. Marsili, S. Kjelleberg, M. Givskov, T. Tolker-Nielsen, H. Song, J. Say Chye Loo, PloS One 2013, 8, e63129.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXoslamtL4%3D&md5=90ca07480e89b44362a925e7c594d23cCAS | 23700414PubMed |

[7]  C. Henry Arnaud, Chem. Engineering News 2013, 91, 11.

[8]  I. Sokolowska, A. G. Ngounou Wetie, A. G. Woods, C. C. Darie, Aust. J. Chem. 2013, 66, 721.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  P. E. Florian, A. Macovei, C. Lazar, A. L. Milac, I. Sokolowska, C. C. Darie, R. W. Evans, A. Roseanu, N. Branza-Nichita, J. Med. Virology 2013, 85, 780.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXkt1Gmurw%3D&md5=f15f95e78b465da3dde18caa1913a581CAS |

[10]  U. Roy, I. Sokolowska, A. G. Woods, C. C. Darie, Biotechnol. Appl. Biochem. 2012, 59, 445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitFyitQ%3D%3D&md5=1355a7d2a73912c6050cacfd685cdb7eCAS | 23586953PubMed |

[11]  I. Sokolowska, C. Dorobantu, A. G. Woods, A. Macovei, N. Branza-Nichita, C. C Darie, Proteome Sci 2012, 10, 47.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFChtrs%3D&md5=d46170cbbd43db7df8dbc7140d6e1d7eCAS | 22857383PubMed |

[12]  I. Sokolowska, M. A. Gawinowicz, A. G. Ngounou Wetie, C. C. Darie, Electrophoresis 2012, 33, 2527.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Sku7jI&md5=79535b10dc93b0d1b05c2b47f29db37fCAS | 22899260PubMed |

[13]  I. Sokolowska, A. G. Ngounou Wetie, U. Roy, A. G. Woods, C. C. Dari, Biochimica et Biophysica Acta 2013, advance article.
         | 23632316PubMed |

[14]  I. Sokolowska, A. G. Ngounou Wetie, A. G. Woods, C. C. Darie, J. Lab. Automation 2012, 17, 408.
         | 1:CAS:528:DC%2BC3sXhtV2msbk%3D&md5=67550f2be3900b208f5ec683d5821814CAS |

[15]  I. Sokolowska, A. G. Woods, M. A. Gawinowicz, U. Roy, C. C. Dari, Cell. Mol. Life Sci. 2012, advance article.
         | 23076253PubMed |

[16]  I. Sokolowska, A. G. Woods, M. A. Gawinowicz, U. Roy, C. C. Darie, FEBS J. 2012, 279, 2579.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvFKnurw%3D&md5=02be31291f892a5c9724b1919fcc4c3dCAS | 22613557PubMed |

[17]  I. Sokolowska, A. G. Woods, M. A. Gawinowicz, U. Roy, C. C. Darie, J Biol. Chem. 2012, 287, 1719.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlGmug%3D%3D&md5=bc401abead6a94971ba7f615ace294e2CAS | 22130669PubMed |

[18]  A. G. Woods, I. Sokolowska, C. C. Darie, Biochem. Biophys. Res. Comm. 2012, 419, 305.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVOgtbk%3D&md5=3de55c4aff6cb6cc18384945c8745d97CAS | 22342715PubMed |

[19]  A. G. Woods, I. Sokolowska, R. Taurines, M. Gerlach, E. Dudley, J. Thome, C. C. Darie, J. Cell. Mol. Med. 2012, 16, 1184.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1SjsbzP&md5=bca4d8a09b45764a98c5afd03f26f5faCAS | 22304330PubMed |

[20]  A. G. Ngounou Wetie, I. Sokolowska, A. G. Woods, C. C. Darie, Aust. J. Chem. 2013, 66, 734.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  A. G. Ngounou Wetie, I. Sokolowska, A. G. Woods, U. Roy, K. Deinhardt, C. C. Darie, Cell. Mol. Life Sci. 2013, advance article.
         | 23579629PubMed |

[22]  A. G. Ngounou Wetie, I. Sokolowska, A. G. Woods, K. L. Wormwood, S. Dao, S. Patel, B. D. Clarkson, C. C. Darie, J. Lab. Automation 2013, 18, 19.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXislyiur8%3D&md5=92a91bc87268270939c2b3f24ab4c30fCAS |

[23]  C. C. Darie, M. L. Biniossek, M. A. Gawinowicz, Y. Milgrom, J. O. Thumfart, L. Jovine, E. S. Litscher, P. M. Wassarman, J. Biol. Chem. 2005, 280, 37585.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2isrjF&md5=783650d50c4014450dd2bf44cfe99a72CAS | 16157586PubMed |

[24]  C. C. Darie, M. L. Biniossek, L. Jovine, E. S. Litscher, P. M. Wassarman, Biochem. 2004, 43, 7459.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvFCgtLw%3D&md5=c8b72313de3e196edcbba93636110e70CAS |

[25]  C. C. Darie, K. Deinhardt, G. Zhang, H. S. Cardasis, M. V. Chao, T. A Neubert, Proteomics 2011, 11, 4514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOnu7bP&md5=ca62d41343e1fd51dcdf8dd64b7aac4eCAS | 21932443PubMed |

[26]  C. Flangea, C. Mosoarca, C. Cozma, M. Galusca, M. Przybylski, A. D. Zamfir, Electrophoresis 2013, 34, 1572.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1eru78%3D&md5=c89c4359361b260b974aa5215b0bf3b5CAS | 23483567PubMed |

[27]  C. Flangea, A. J. Petrescu, D. G. Seidler, C. V. Munteanu, A. D. Zamfir, Electrophoresis 2013, 34, 1581.
         | 1:CAS:528:DC%2BC3sXntV2nsbk%3D&md5=13f4213414aa56613a9169157a965178CAS | 23494731PubMed |

[28]  A. D. Zamfir, C. Flangea, A. Serb, A. M. Zagrean, A. M. Rizzi, E. Sisu, Methods in Mol. Biol. 2013, 951, 145.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  I. Flangea, D. Fabris, Z. Vukelic, A. D. Zamfir, Aust. J. Chem. 2013, 66, 781.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  V. Shetty, J. Hafner, P. Shah, Z. Nickens, R. Philip, Clin. Proteomics 2012, 9, 10.
         | Crossref | GoogleScholarGoogle Scholar | 22856521PubMed |

[31]  V. Shetty, P. Jain, Z. Nickens, G. Sinnathamby, A. Mehta, R. Philip, Omics: J Integrative Biol. 2011, 15, 705.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWit7nM&md5=536ac80b3e6e12fcdbe6723b85541b7cCAS |

[32]  V. Shetty, Z. Nickens, P. Shah, G. Sinnathamby, O. J. Semmes, R. Philip, Anal. Chem. 2010, 82, 9201.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1CmurzF&md5=5a0541c3964f9acb3cf085678fdf1003CAS | 20923142PubMed |

[33]  V. Shetty, Z. Nickens, J. Testa, J. Hafner, G. Sinnathamby, R. Philip, J. Proteomics 2012, 75, 3270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms12rsbY%3D&md5=71d2022d58a999d0eb8ceb0a25638e09CAS | 22504797PubMed |

[34]  V. Shetty, G. Sinnathamby, Z. Nickens, P. Shah, J. Hafner, L. Mariello, S. Kamal, G. Vlahovic, H. K. Lyerly, M. A. Morse, R. Philip, J. Proteomics 2011, 74, 728.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFGnsb8%3D&md5=44b594bb4c27a079f869d9d8eb788d8eCAS | 21362506PubMed |

[35]  V. Shetty, R. Philip, Aust. J. Chem. 2013, 66, 770.
         | Crossref | GoogleScholarGoogle Scholar |

[36]  I. Perdivara, L. Perera, M. Sricholpech, M. Terajima, N. Pleshko, M. Yamauchi, K. B. Tomer, J. Am. Soc. Mass Spectrometry 2013, 24, 1072.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptFSrtL0%3D&md5=7efa4447ff34aa9e9a1e09a9ce3a16b6CAS |

[37]  M. Sricholpech, I. Perdivara, M. Yokoyama, H. Nagaoka, M. Terajima, K. B. Tomer, M. Yamauchi, J. Biol. Chem. 2012, 287, 22998.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptlWmtrY%3D&md5=c9ff9547cda7684288d46321693be4fdCAS | 22573318PubMed |

[38]  I. Perdivara, M. Yamauchi, K. B. Tomer, Aust. J. Chem. 2013, 66, 760.
         | Crossref | GoogleScholarGoogle Scholar |

[39]  A. Calabrese, T. Pukala, Aust. J. Chem. 2013, 66, 749.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  A. N. Calabrese, N. J. Good, T. Wang, J. He, J. H. Bowie, T. L. Pukala, J. Am. Soc. Mass Spectrometry 2012, 23, 1364.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVGhsLvF&md5=c6247dbb32d748b05a325bb7fd649aa6CAS |

[41]  A. N. Calabrese, T. Wang, J. H. Bowie, T. L. Pukala, Rapid Comm. Mass Spectrometry 2013, 27, 238.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVCktr3I&md5=a2cea68af0dac5e76f1c89a3c46e24efCAS |

[42]  T. L. Pukala, T. Urathamakul, S. J. Watt, J. L. Beck, R. J. Jackway, J. H. Bowie, Rapid Comm. Mass Spectrometry 2008, 22, 3501.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOhu7vF&md5=cf0de5bb8862343ae25cdc1b192dfd2aCAS |

[43]  Z. Jin, G. Guven, V. Bocharova, J. Halamek, I. Tokarev, S. Minko, A. Melman, D. Mandler, E. Katz, ACS Appl. Mat. Interfaces 2012, 4, 466.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1OjurfI&md5=573f86e5025d3d2fe782f0d3ad19e147CAS |

[44]  N. LeTourneau, P. Vimal, D. Klepacki, A. Mankin, A. Melman, Bioorganic Med. Chem. Letters 2012, 22, 4575.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xpt1Shu74%3D&md5=8665f970edcfaf7f2bf0ec49f1becbe4CAS |

[45]  R. P. Narayanan, G. Melman, N. J. Letourneau, N. L. Mendelson, A. Melman, Biomacromolecules 2012, 13, 2465.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpvVKksrw%3D&md5=a12deb08d6c49a46e343af48d785cf92CAS | 22775540PubMed |

[46]  X. X. Liu, A. Melman, Aust. J. Chem. 2013, 66, 791.
         | Crossref | GoogleScholarGoogle Scholar |

[47]  F. Chang, J. J. Pagano, B. S. Crimmins, M. S. Milligan, X. Xia, P. K. Hopke, T. M. Holsen, Sci. Total Env. 2012, 439, 284.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WntLzN&md5=f0174fa17fce36fd492ed4b88b4576baCAS |

[48]  B. S. Crimmins, J. J. Pagano, X. Xia, P. K. Hopke, M. S. Milligan, T. M. Holsen, Env. Sci. Techn. 2012, 46, 9890.
         | 1:CAS:528:DC%2BC38Xht1Kqu7jE&md5=e21f7035ac3c97f2f0a59acdf0b41da0CAS |

[49]  B. S. Crimmins, J. J. Pagano, M. S. Milligan, T. M. Holsen, Aust. J. Chem. 2013, 66, 798.
         | Crossref | GoogleScholarGoogle Scholar |