Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Probing of the pH-Dependent Redox Mechanism of a Biologically Active Compound, 5,8-Dihydroxynaphthalene-1,4-dione

Shamsa Munir A , Afzal Shah A C , Usman Ali Rana B , Imran Shakir B , Zia-ur-Rehman A and Syed Mujtaba Shah A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.

B Deanship of Scientific Research, College of Engineering, PO Box 800, King Saud University, Riyadh 11421, Saudi Arabia.

C Corresponding author. Email: afzals_qau@yahoo.com

Australian Journal of Chemistry 67(2) 206-212 https://doi.org/10.1071/CH13373
Submitted: 16 July 2013  Accepted: 5 September 2013   Published: 20 September 2013

Abstract

The redox behaviour of a potential anticancer organic compound, 5,8-dihydroxynaphthalene-1,4-dione (DND), was investigated in 1 : 1 buffered aqueous ethanol using cyclic, differential pulse, and square wave voltammetry. The redox processes were found to occur in a pH-dependent diffusion-controlled manner. Presence of an α-hydroxyl group stabilised semiquinone radical of DND, formed by the gain of 1 e and 1 H+, prevented the second step reduction, which is in contrast to the general mechanism previously reported for quinines in protic and aprotic media. In addition, our results supported an independent oxidation and reduction process. Square wave voltammetry provided evidence about the reversible and quasi-reversible nature of oxidation and reduction peaks. Based on the voltammetric results, the electrode reaction mechanism of DND was proposed. Parameters including pKa, transfer coefficient, diffusion coefficient, and electron transfer rate constant were evaluated. The values of pKa obtained from cyclic voltammetry and ultraviolet-visible spectroscopy not only agreed with each other, but also with reported values of structurally related compounds evaluated by other techniques.


References

[1]  A. K. Boudalis, X. Policand, A. Sournia-Saquet, B. Donnadieu, J. P. Tuchagues, Inorg. Chim. Acta 2008, 361, 1681.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXislyqtLw%3D&md5=29e7df3bdd33a4074c428e4b2c689942CAS |

[2]  V. K. Tandon, R. B. Chhor, R. V. Singh, S. Raib, D. B. Yadava, Bioorg. Med. Chem. Lett. 2004, 14, 1079.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFemt7s%3D&md5=1c8a0f1830a4af9df4a5c497fcc90163CAS | 14980639PubMed |

[3]  P. Zuman, Substituent Effects in Organic Polarography 1967 (Plenum Press: New York, NY).

[4]  P. S. Guin, S. Das, P. C. Mandal, Int. J. Electrochem. Sci. 2008, 3, 1016.
         | 1:CAS:528:DC%2BD1cXhtVCju7vM&md5=0f8d7eab574379fea8bc6fc209a1d4bbCAS |

[5]  Y. N. Hu, Z. H. Jiang, K. S. Y. Leung, Z. Z. Zhao, Anal. Chim. Acta 2006, 577, 26.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XoslGgtLw%3D&md5=79a1dcca2698d5b5b67d48fd3dca3e4cCAS |

[6]  H. Zhou, J. Wang, B. Yea, J. Anal. Chem. 2010, 65, 749.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotlykur0%3D&md5=55a8d3d0b0e78c4b241de7fa4b45285bCAS |

[7]  H. Gershon, Can. J. Microbiol. 1975, 21, 1317.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xht1eitA%3D%3D&md5=5ddd67e8eb9987bb522bcd2ae9793ceaCAS | 241479PubMed |

[8]  S. V. Rodrigues, L. M. Viana, W. Baumann, Anal. Bioanal. Chem. 2006, 385, 895.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslSlsrg%3D&md5=d37be8c8d074ac0aa4db2ada47bfe85cCAS | 16791570PubMed |

[9]  R. J. Forster, J. P. O’Kelly, J. Electroanal. Chem. 2001, 498, 127.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhsVentLY%3D&md5=9cef16028b39416ecc18bf832932bd0dCAS |

[10]  Y. Tang, Y. Wu, Z. Wang, J. Electrochem. Soc. 2001, 148, E133.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXivVahurY%3D&md5=2ddc925e44c9ecf090736f50e2fd3f96CAS |

[11]  M. Quan, D. Sanchez, M. F. Wasylkiw, D. K. Smith, J. Am. Chem. Soc. 2007, 129, 12847.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFShtbnJ&md5=585bfa98a22bf025328bb4a0dd85e86bCAS | 17910453PubMed |

[12]  N. Gupta, H. Linschitz, J. Am. Chem. Soc. 1997, 119, 6384.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlKjtro%3D&md5=1722067c772f20d318970b8c02ec6b09CAS |

[13]  M. D. Stallings, M. M. Morrison, D. T. Sawyer, Inorg. Chem. 1981, 20, 2655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXks12rtLg%3D&md5=75dd1c5bc63f5827eaaa2d3b9db69d1eCAS |

[14]  M. Shamsipur, A. Siroueinejad, B. Hemmateenejad, A. Abbaspour, H. Sharghi, K. Alizadeh, S. Arshadi, J. Electroanal. Chem. 2007, 600, 345.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslGntA%3D%3D&md5=71846338efa11c0f17cf244fd94dd8c1CAS |

[15]  M. W. Lehmann, D. H. Evans, J. Electroanal. Chem. 2001, 500, 12.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhslelsr4%3D&md5=c9192cdcc40348d06dbea3d3f98c84e3CAS |

[16]  E. Nosheen, A. Shah, A. Badshah, Z. Rehman, H. Hussain, R. Qureshi, S. Ali, M. Siddiq, A. M. Khan, Electrochim. Acta 2012, 80, 108.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1GisLfE&md5=454ca1f8eed40c7f9f7586df0183d2eeCAS |

[17]  S. S. Kalanur, J. Seetharamappa, U. Katrahalli, P. B. Kandagal, Int. J. Electrochem. Sci. 2008, 3, 711.
         | 1:CAS:528:DC%2BD1cXlvFejsrw%3D&md5=2c8a0b83cce6a1fe5a8d1b70d718a9ddCAS |

[18]  A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn 2001 (John Wiley & Sons, Inc.: New York, NY).

[19]  C. M. A. Brett, A. M. O. Brett, Electrochemistry: Principles, Methods and Applications 1993 (Oxford University Press: Oxford).

[20]  M. A. B. H. Susan, M. Begum, Y. Takeoka, M. Watanabe, J. Electroanal. Chem. 2000, 481, 192.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtV2jt7c%3D&md5=56dd87a4f900ae7bef236b7890f71096CAS |

[21]  D. Y. Chung, E. H. Lee, J. Ind. Eng. Chem. 2006, 12, 962.
         | 1:CAS:528:DC%2BD28XhtlSjtbrM&md5=f6d4ac16983b7bfc14562ed748cf3bbfCAS |

[22]  S. Gallot, O. Thomas, Fresenius’ J. Anal. Chem. 1993, 346, 976.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsFKitLg%3D&md5=0861b7edb47605d00eeda4dc43da338cCAS |

[23]  S. Riahi, S. Eynollahi, M. R. Ganjali, Int. J. Electrochem. Sci. 2009, 4, 1128.
         | 1:CAS:528:DC%2BD1MXhtVKltL%2FM&md5=48f039a02d07a788cfeb97d062ddfd45CAS |

[24]  K. A. Idriss, M. M. S. Saleh, Monatsh. Chem. 1993, 124, 1089.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvVWqtr0%3D&md5=e0bcf41fd762528cd9f6857de65b4391CAS |

[25]  J. Gendell, W. R. Miller, G. K. Fraenkel, J. Am. Chem. Soc. 1969, 91, 4369.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXksFGgur4%3D&md5=8bc23c90d03b3bbac9237244db1104b9CAS |