Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
REVIEW

Capture and Fixation of CO2 Promoted by Guanidine Derivatives

Shuai Zhang A and Liang-Nian He A B
+ Author Affiliations
- Author Affiliations

A State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.

B Corresponding author. Email: heln@nankai.edu.cn




Shuai Zhang obtained his B.S. degree in chemistry from Nankai University in 2010. He is currently a Ph.D. student at the State Key Laboratory of Elemento-Organic Chemistry, Nankai University, under the supervision of Professor Liang-Nian He. His research interests include carbon capture and fixation and transition metal-catalyzed carboxylation with CO2 as C1 resources.



Professor Liang-Nian He received his Ph.D. degree from Nankai University in 1996, and was a post-doctoral fellow at Wuhan University. He worked as a Postdoctoral Research Associate at the National Institute of Advanced Science and Technology, Japan, from 1999 to 2003 before joining Nankai University in 2003. He is Professor of Chemistry at Nankai University, a Fellow of the Royal Society of Chemistry, and Series Editor of Green Chemistry and Sustainable Technology (Springer). Professor He is the author and co-author of more than 150 peer-reviewed journal articles and holds eight patents. He has also edited 10 books and book chapters, and has delivered more than 50 keynote speeches and invited talks. His research involves CO2 chemistry, green synthetic chemistry, task-specific ionic liquids, catalysis in green solvents, and biomass conversion.

Australian Journal of Chemistry 67(7) 980-988 https://doi.org/10.1071/CH14125
Submitted: 10 March 2014  Accepted: 17 April 2014   Published: 16 May 2014

Abstract

Guanidine compounds and their derivatives can be developed as catalysts, additives, or promoters in organic synthesis due to their unique chemical properties, which have attracted much attention in the chemistry and catalysis communities. Particularly, the strong basicity and ease of structural modification allow them to offer wide applications in the field of CO2 capture and conversion. Guanidine compounds modified as ionic liquids or heterogeneous catalysts have also been developed for CO2 capture and conversion. In this context, the latest progress on CO2 capture using guanidine and their derivatives as absorbents with high capacity will be summarized. Furthermore, guanidine-catalyzed transformation of CO2 to a series of value-added chemicals with mechanistic consideration on a molecular level will be particularly elaborated in this article.


References

[1]  (a) For reviews on guanidine-catalyzed reactions see: T. Ishikawa, T. Kumamoto, Synthesis 2006, 2006, 737.
         | Crossref | GoogleScholarGoogle Scholar |
      (b) T. Suhs, B. König, Mini Rev. Org. Chem. 2006, 3, 315.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) R. G. S. Berlinck, A. C. B. Burtoloso, M. H. Kossuga, Nat. Prod. Rep. 2008, 25, 919.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) D. Leow, C. H. Tan, Chem. Asian J. 2009, 4, 488.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  (a) V. A. Russell, M. C. Etter, M. D. Ward, J. Am. Chem. Soc. 1994, 116, 1941.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvFSmurk%3D&md5=0bf3b5ebdb8ad6bd6f4ffec36a06517cCAS |
      (b) V. A. Russell, M. D. Ward, J. Mater. Chem. 1997, 7, 1123.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) V. Hoepfner, V. L. Deringer, R. Dronskowski, J. Phys. Chem. A 2012, 116, 4551.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) V. Videnova-Adrabinska, E. Obara, T. Lis, New J. Chem. 2007, 31, 287.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  (a) Selected articles with guanidines as asymmetric catalyst: E. J. Corey, M. J. Grogan, Org. Lett. 1999, 1, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjt1aqtLo%3D&md5=7e104089e8e2c2980c921b2e49d0226bCAS | 10822552PubMed |
      (b) D. Leow, C.-H. Tan, Synlett 2010, 1589.
      (c) Y. Zhang, C. W. Kee, R. Lee, X. Fu, J. Y.-T. Soh, E. M. F. Loh, K.-W. Huang, C.-H. Tan, Chem. Commun. 2011, 47, 3897.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. Horváth, Tetrahedron Lett. 1996, 37, 4423.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  C. Ghobril, C. Sabot, C. Mioskowski, R. Baati, Eur. J. Org. Chem. 2008, 2008, 4104.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  V. Alcázar, J. R. Morán, J. de Mendoza, Tetrahedron Lett. 1995, 36, 3941.
         | Crossref | GoogleScholarGoogle Scholar |

[7]  (a) C. Uyeda, E. N. Jacobsen, J. Am. Chem. Soc. 2008, 130, 9228.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsl2kurs%3D&md5=acc0b759a9c618942729aa1852989583CAS | 18576616PubMed |
      (b) B. Shin, S. Tanaka, T. Kita, Y. Hashimoto, K. Nagasawa, Heterocycles 2008, 76, 801.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) C. Uyeda, A. R. Rötheli, E. N. Jacobsen, Angew. Chem. Int. Ed. 2010, 49, 9753.
         | Crossref | GoogleScholarGoogle Scholar |

[8]  (a) M. Terada, H. Ube, Y. Yaguchi, J. Am. Chem. Soc. 2006, 128, 1454.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvV2lsg%3D%3D&md5=1a92e4b9d203f87c7e5b41ef8bad5364CAS | 16448108PubMed |
      (b) J. Shen, T. T. Nguyen, Y.-P. Goh, W. Ye, X. Fu, J. Xu, C.-H. Tan, J. Am. Chem. Soc. 2006, 128, 13692.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) M. Martín-Portugués, V. Alcázar, P. Prados, J. de Mendoza, Tetrahedron 2002, 58, 2951.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) X. Fu, W.-T. Loh, Y. Zhang, T. Chen, T. Ma, H. Liu, J. Wang, C.-H. Tan, Angew. Chem. Int. Ed. 2009, 48, 7387.
         | Crossref | GoogleScholarGoogle Scholar |

[9]  (a) V. K. Rai, M. Nishiura, M. Takimoto, Z. Hou, J. Mater. Chem. C 2013, 1, 677.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOrt7fP&md5=675737338b460831763d1685910a23f5CAS |
      (b) R. García-Álvarez, F. J. Suárez, J. Díez, P. Crochet, V. Cadierno, A. Antiñolo, R. Fernández-Galán, F. Carrillo-Hermosilla, Organometallics 2012, 31, 8301.
         | Crossref | GoogleScholarGoogle Scholar |

[10]  (a) M. Costa, G. P. Chiusoli, D. Taffurelli, G. Dalmonego, J. Chem. Soc., Perkin Trans. 1 1998, 1541.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVyisLc%3D&md5=74c384c507a51fa28f9da67fbf6b44f3CAS |
      (b) B. Kovacevic, Z. B. Maksic, Org. Lett. 2001, 3, 1523.
         | Crossref | GoogleScholarGoogle Scholar |

[11]  Y. Yamamoto, S. Kojima, in The Chemistry of Amidines and Imidates (Eds S. Patai, Z. Rappoport) 1991, Vol. 2, pp. 485–526 (John Wiley & Sons Inc.: New York, NY).

[12]  (a) Selected articles for CO2 chemistry: D. M. D’Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVaqu7fL&md5=c8020ffb2dbaa90a63126b1f1df9a0ceCAS |
      (b) S. Choi, J. H. Drese, C. W. Jones, ChemSusChem 2009, 2, 796.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) J. E. Bara, T. K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello, D. L. Gin, R. D. Noble, Ind. Eng. Chem. Res. 2009, 48, 2739.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) J.-L. Wang, C.-X. Miao, X.-Y. Dou, J. Gao, L.-N. He, Curr. Org. Chem. 2011, 15, 621.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) L.-N. He, J.-Q. Wang, J.-L. Wang, Pure Appl. Chem. 2009, 81, 2069.
         | Crossref | GoogleScholarGoogle Scholar |
         (f) L.-N. He, Z.-Z. Yang, A.-H. Liu, J. Gao, in Advances in CO2 Conversion and Utilization (Ed. Y. H. Hu) 2010, American Chemical Society Symposium Series, Vol. 1056, pp. 77–101 (Oxford University Press: New York, NY).

[13]  T. Sakakura, J.-C. Choi, H. Yasuda, Chem. Rev. 2007, 107, 2365.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlaksrc%3D&md5=25e56a2671fdd71b4410048e2b538007CAS | 17564481PubMed |

[14]  M. Aresta, A. Dibenedetto, Dalton Trans. 2007, 36, 2975.
         | Crossref | GoogleScholarGoogle Scholar |

[15]  S. N. Riduan, Y. Zhang, Dalton Trans. 2010, 39, 3347.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslWjsro%3D&md5=2169ab491e31b105162a40e3f45225ffCAS | 20379526PubMed |

[16]  M. Mikkelsen, M. Jorgensen, F. C. Krebs, Energy Environ. Sci. 2010, 3, 43.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvVaitbk%3D&md5=e9db9def0a114c9ea608c8f94f54a30fCAS |

[17]  I. Omae, Catal. Today 2006, 115, 33.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvF2ksro%3D&md5=9df15b5bc49f53fdde3ae966e18ab64cCAS |

[18]  (a) J. Ma, X. Zhang, N. Zhao, A. S. N. Al-Arifi, T. Aouak, Z. A. Al-Othman, F. Xiao, W. Wei, Y. Sun, J. Mol. Catal. A 2010, 315, 76.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlGhsrnK&md5=7239084d35e0e177a3c014c9f4478819CAS |
      (b) E. R. Pérez, R. H. A. Santos, M. T. P. Gambardella, L. G. M. de Macedo, U. P. Rodrigues-Filho, J. C. Launay, D. W. Franco, J. Org. Chem. 2004, 69, 8005.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) H. Zhou, W.-Z. Zhang, C.-H. Liu, J.-P. Qu, X.-B. Lu, J. Org. Chem. 2008, 73, 8039.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) S. N. Riduan, Y. Zhang, J. Y. Ying, Angew. Chem. Int. Ed. 2009, 48, 3322.
         | Crossref | GoogleScholarGoogle Scholar |
      (e) Y. Kayaki, M. Yamamoto, T. Ikariya, Angew. Chem. Int. Ed. 2009, 48, 4194.
         | Crossref | GoogleScholarGoogle Scholar |
      (f) Y.-B. Wang, Y.-M. Wang, W.-Z. Zhang, X.-B. Lu, J. Am. Chem. Soc. 2013, 135, 11996.
         | Crossref | GoogleScholarGoogle Scholar |

[19]  (a) D. J. Heldebrant, C. R. Yonker, P. G. Jessop, L. Phan, Chem. - Eur. J. 2009, 15, 7619.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlersrs%3D&md5=65c5dc03af65c8e09c9230a1d304cc04CAS | 19551772PubMed |
      (b) D. J. Heldebrant, P. G. Jessop, C. A. Thomas, C. A. Eckert, C. L. Liotta, J. Org. Chem. 2005, 70, 5335.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  P. G. Jessop, D. J. Heldebrant, X. Li, C. A. Eckert, C. L. Liotta, Nature 2005, 436, 1102.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovVOgs7c%3D&md5=c991f919482d5143c7346f26c673a3beCAS | 16121169PubMed |

[21]  L. Phan, D. Chiu, D. J. Heldebrant, H. Huttenhower, E. John, X. Li, P. Pollet, R. Wang, C. A. Eckert, C. L. Liotta, P. G. Jessop, Ind. Eng. Chem. Res. 2008, 47, 539.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvVCnu7o%3D&md5=492dd31c478283157339f51b03f9446eCAS |

[22]  Y. Liu, P. G. Jessop, M. Cunningham, C. A. Eckert, C. L. Liotta, Science 2006, 313, 958.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFCitLs%3D&md5=1610f555c967d0e4c2315dcb008211d8CAS | 16917059PubMed |

[23]  D. J. Heldebrant, C. R. Yonker, P. G. Jessop, L. Phan, Energy Environ. Sci. 2008, 1, 156.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2htrjF&md5=d23ead3b5c494a0778b5d0c35108c180CAS |

[24]  M. North, R. Pasquale, C. Young, Green Chem. 2010, 12, 1514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFWqsbvF&md5=e4364040a6b2e0100a44b683363a6552CAS |

[25]  C. Wang, H. Luo, D. Jiang, H. Li, S. Dai, Angew. Chem. Int. Ed. 2010, 49, 5978.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslCnsrk%3D&md5=430b0dace4d96d3e3fcb078cd0ee4ba6CAS |

[26]  C. Wang, S. M. Mahurin, H. Luo, G. A. Baker, H. Li, S. Dai, Green Chem. 2010, 12, 870.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlvVGhsLw%3D&md5=af7fa3e8589fe0678103b04bc77d4184CAS |

[27]  C. Wang, H. Luo, X. Luo, H. Li, S. Dai, Green Chem. 2010, 12, 2019.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlOht7%2FM&md5=1bb4a9155062194a2e852ab05fb1bad8CAS |

[28]  C. Wang, X. Luo, H. Luo, D.-E. Jiang, H. Li, S. Dai, Angew. Chem. Int. Ed. 2011, 50, 4918.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVektb4%3D&md5=5067d7629f053caabeef60d915f9d78fCAS |

[29]  J. L. Anderson, J. K. Dixon, J. F. Brennecke, Acc. Chem. Res. 2007, 40, 1208.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Cjs77J&md5=c7d46266048e4274df0c8554b8cbd063CAS | 17970599PubMed |

[30]  T. L. Amyes, S. T. Diver, J. P. Richard, F. M. Rivas, K. Toth, J. Am. Chem. Soc. 2004, 126, 4366.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvF2iurk%3D&md5=a3011df10fd0ab818eb8232add0b1a49CAS | 15053626PubMed |

[31]  B. R. Van Ausdall, J. L. Glass, K. M. Wiggins, A. M. Aarif, J. Louie, J. Org. Chem. 2009, 74, 7935.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKktLvK&md5=123bcecfca259e80fe70ec7282332941CAS | 19775141PubMed |

[32]  Z.-Z. Yang, L.-N. He, Y.-N. Zhao, B. Li, B. Yu, Energy Environ. Sci. 2011, 4, 3971.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKitbjK&md5=5b9141bb456d179409b51be6c3711534CAS |

[33]  D. J. Heldebrant, P. K. Koech, M. T. C. Ang, C. Liang, J. E. Rainbolt, C. R. Yonker, P. G. Jessop, Green Chem. 2010, 12, 713.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1Grtbs%3D&md5=b02286ec228c6443aad3671bdc51ed30CAS |

[34]  P. K. Koech, J. Zhang, I. V. Kutnyakov, L. Cosimbescu, S.-J. Lee, M. E. Bowden, T. D. Smurthwaite, D. J. Heldebrant, RSC Adv. 2013, 3, 566.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSmt7rF&md5=0ff7df63933e216a4cbc68ad7084d992CAS |

[35]  F. S. Pereira, E. R. deAzevedo, E. F. da Silva, T. J. Bonagamba, D. L. da Silva Agostíni, A. Magalháes, A. Eloizo Job, E. R. Pérez Gonzaález, Tetrahedron 2008, 64, 10097.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFentL7F&md5=64426bd0582981e19111eb1a1eaa94daCAS |

[36]  S. J. Mohri, J. Synth. Org. Chem. Jpn. 2001, 59, 514.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFGgs78%3D&md5=99f2d3c99c2566072b6a62d79e8a6d7dCAS |

[37]  (a) G. J. Pastor, C. Blanchard, C. Montginoul, E. Torreilles, L. Giral, A. Texier, Bull. Soc. Chim. Fr. 1975, 23, 1331.
      (b) M. Khalifa, A. N. Osman, M. G. Ibrahim, A. R. E. Ossman, M. A. Ismail, Pharmazie 1982, 37, 115.

[38]  M. Michman, S. Patai, Y. Wiesel, Org. Prep. Proced. Int. 1978, 10, 13.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhtlKmt7Y%3D&md5=1f9f473774baf6be162276c7b07deb6aCAS |

[39]  N. A. Lange, F. E. Sheibley, Org. Synth. 1943, 2, 79.

[40]  H. Vorbrüggen, K. Krolikiewicz, Tetrahedron 1994, 50, 6549.
         | Crossref | GoogleScholarGoogle Scholar |

[41]  J. Gao, L.-N. He, C.-X. Miao, S. Chanfreau, Tetrahedron 2010, 66, 4063.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFyrt78%3D&md5=e2de8de163bac50cb18b01327de8c11eCAS |

[42]  (a) T. A. Mukhtar, G. D. Wright, Chem. Rev. 2005, 105, 529.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlGmsA%3D%3D&md5=430340a2d7bef5c012f92bc2af4967b4CAS | 15700955PubMed |
      (b) L. Aurelio, R. T. C. Brownlee, A. B. Hughes, Chem. Rev. 2004, 104, 5823.
         | Crossref | GoogleScholarGoogle Scholar |

[43]  C. W. Y. Chung, P. H. Toy, Tetrahedron Asymmetr. 2004, 15, 387.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVyjtw%3D%3D&md5=c771cd8cd4d4b178925b46632a079ec8CAS |

[44]  M. R. Barbachyn, D. K. Hutchinson, S. J. Brickner, G. E. Zurenko, J. Med. Chem. 1996, 39, 680.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvVCisQ%3D%3D&md5=ed33242b80b3ffebd17f89819bbead3fCAS | 8576910PubMed |

[45]  (a) C. Bruneau, P. H. Dixneuf, J. Mol. Catal. 1992, 74, 97.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XmsFWhtro%3D&md5=eac3bdf5cbf195adcde84b9989b897bfCAS |
      (b) M. Shi, Y.-M. Shen, J. Org. Chem. 2002, 67, 16.
         | Crossref | GoogleScholarGoogle Scholar |
      (c) Y. Gu, Q. Zhang, Z. Duan, J. Zhang, S. Zhang, Y. Deng, J. Org. Chem. 2005, 70, 7376.
         | Crossref | GoogleScholarGoogle Scholar |
      (d) M. Feroci, M. Orsini, G. Sotgiu, L. Rossi, A. Inesi, J. Org. Chem. 2005, 70, 7795.
         | Crossref | GoogleScholarGoogle Scholar |

[46]  M. Costa, G. P. Chiusoli, M. Rizzardi, Chem. Commun. 1996, 1699.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFejsrg%3D&md5=b2cd0f1b706d334585aa3d0a2c19ee8eCAS |

[47]  N. Della Cá, B. Gabriele, G. Ruffolo, L. Veltri, T. Zanetta, M. Costa, Adv. Synth. Catal. 2011, 353, 133.
         | Crossref | GoogleScholarGoogle Scholar |

[48]  A.-A. G. Shaikh, S. Sivaram, Chem. Rev. 1996, 96, 951.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xitl2rtbk%3D&md5=965c94619c4cd294df6f90424c2e116dCAS |

[49]  Z. Z. Yang, L. N. He, C. X. Miao, S. Chanfreau, Adv. Synth. Catal. 2010, 352, 2233.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFyhsL7M&md5=f6f431870517277ccd65088f0a2f69dcCAS |

[50]  H. Xie, H. Duan, S. Li, S. Zhang, New J. Chem. 2005, 29, 1199.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpt1antbc%3D&md5=53c9284ca47c5e37bc6f2e5c0ee4fd73CAS |

[51]  X. Dou, J. Wang, Y. Du, E. Wang, L.-N. He, Synlett 2007, 19, 3058.

[52]  W.-L. Dai, B. Jin, S.-L. Luo, X.-B. Luo, X.-M. Tu, C.-T. Au, J. Mol. Catal. Chem. 2013, 378, 326.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlOrtbrO&md5=67a4d6ee0fb859dd4703635e3a845588CAS |

[53]  A. Barbarini, R. Maggi, A. Mazzacani, G. Mori, G. Sartoria, R. Sartorio, Tetrahedron Lett. 2003, 44, 2931.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFGlu7w%3D&md5=94093cb3a02bcf49724d47acef5695bdCAS |

[54]  R. Maggi, C. Bertolotti, E. Orlandini, C. Oro, G. Sartori, M. Selva, Tetrahedron Lett. 2007, 48, 2131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1yksbg%3D&md5=15819bdf287d8388991cb8314f0bd072CAS |