Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Electrochemical and Photoelectrochemical Investigation of New Self-Assembled Films Based on Prussian Blue and a Terpyridyl RuII Complex

Qiu-Ying Huang A , Si-Yuan Kang B , Hao Lin B and Ke-Zhi Wang B C
+ Author Affiliations
- Author Affiliations

A Department of Chemical Engineering, Henan Polytechnic Institute, Nanyang 473009, China.

B Beijing Key Laboratory of Energy Conversion and Storage Materials and College of Chemistry, Beijing Normal University, Beijing 100875, China.

C Corresponding author. Email: kzwang@bnu.edu.cn

Australian Journal of Chemistry 68(3) 426-432 https://doi.org/10.1071/CH14303
Submitted: 10 October 2013  Accepted: 4 June 2014   Published: 8 August 2014

Abstract

A new hybrid multilayer film containing Prussian blue (PB) and a bis-terpyridyl RuII complex of RuII(L)2(ClO4)2 (in which L = 4′-(4-(imidazol-1-yl)phenyl)-2,2′:6′,2″-terpyridine), was fabricated though covalently and electrostatic layer-by-layer self-assembly techniques, and characterised by UV-vis absorption spectroscopy, cyclic voltammetry, and photoelectrochemical techniques. The results demonstrated that the two film-forming components were successfully transferred into the hybrid film, which exhibited three quasi-reversible redox couples centred at 0.06, 0.76, and 1.0 V. The photoelectrochemical studies showed that an 11-layer film exhibited a large cathodic photocurrent density of 7.72 μA cm–2 while irradiated with 100 mW cm–2 polychromatic light (325 < λ < 730 nm) at an applied potential of –0.2 V versus a saturated calomel electrode.


References

[1]  A. A. Karyakin, Electroanalysis 2001, 13, 813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFKksb4%3D&md5=aa50914a9162fc1e693be8488a85b009CAS |

[2]  K. Itaya, I. Uchida, V. D. Neff, Acc. Chem. Res. 1986, 19, 162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xks1yrt7s%3D&md5=cbdf1c67d88f35d5736c5dddd9d42e6bCAS |

[3]  L. Cao, Y. Liu, B. Zhang, L. Lu, ACS Appl. Mater. Interfaces 2010, 2, 2339.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVSmt74%3D&md5=e92d6d69068dcedb9d8d070f7855ad3aCAS | 20735106PubMed |

[4]  A. A. Karyakin, O. Gitelmacher, E. E. Karyakina, Anal. Lett. 1994, 27, 2861.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisFSmtb4%3D&md5=2ad824e51492cdff6ba9d7e12c31ab17CAS |

[5]  F. Ricci, G. Palleschi, Biosens. Bioelectron. 2005, 21, 389.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVCqtrw%3D&md5=a7cd5165378518fc979ec4cacffcdc6aCAS | 16076428PubMed |

[6]  A. Eftekhari, J. Power Sources 2004, 126, 221.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlaltw%3D%3D&md5=7292d8a7da68f9c4159731b838070cd3CAS |

[7]  D. M. F. Santos, P. G. Saturnino, R. F. M. Lobo, C. A. C. Sequeira, J. Power Sources 2012, 208, 131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFyrsrc%3D&md5=35a3892deee1aed6356559a7533eca31CAS |

[8]  M. Deepa, A. Awadhia, S. Bhandari, S. L. Agrawal, Electrochim. Acta 2008, 53, 7266.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1aktLo%3D&md5=b96c4ffe4c6e1a7966d7d8a887083ce9CAS |

[9]  K. J. Nelson, J. S. Miller, Inorg. Chem. 2008, 47, 2526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivV2gurY%3D&md5=e6180446458669be3e4cc9144802056dCAS | 18321044PubMed |

[10]  S. Pintado, S. Goberna-Ferrón, E. C. Escudero-Adán, J. Ramón Galán-Mascarós, J. Am. Chem. Soc. 2013, 135, 13270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlChs7%2FK&md5=8a692ef4ef16bbc3a4e0541458b67cf0CAS | 23978044PubMed |

[11]  S. S. Kaye, J. R. Long, J. Am. Chem. Soc. 2005, 127, 6506.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt1OktL4%3D&md5=afb1a4fc32cdc8ff8fc7b09943ca5d3aCAS | 15869251PubMed |

[12]  J. G. Vos, J. M. Kelly, Dalton Trans. 2006, 4869.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVygtbvP&md5=a444c8b1abf098923b76e53e5e4ce6adCAS | 17047734PubMed |

[13]  H. Luo, Z. P. Wang, A. G. Zhang, K. Z. Wang, Aus. J. Chem. 2011, 64, 206.
         | 1:CAS:528:DC%2BC3MXhvFWhsrc%3D&md5=1f4452438e5b122a0049ddc3a6064fc9CAS |

[14]  Y. L. Yao, X. Y. Bai, K. K. Shiu, Nanomaterials 2012, 2, 428.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVyhur7I&md5=15e0d7e46ae27b455917019da9ea7fd3CAS |

[15]  Y. Guo, A. R. Guadalupe, Chem. Mater. 1999, 11, 135.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvVKmurc%3D&md5=695f946dd87651d14c122d2854f49a8dCAS |

[16]  J. J. Garcia-Jareño, D. Benito, J. Navarro-Laboulais, F. Vicente, J. Chem. Educ. 1998, 75, 881.
         | Crossref | GoogleScholarGoogle Scholar |

[17]  H. Shiozaki, T. Kawamoto, H. Tanaka, S. Hara, M. Tokumoto, A. Gotoh, T. Satoh, M. Ishizaki, M. Kurihara, M. Sakamoto, Jpn. J. Appl. Phys. 2008, 47, 1242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1alurw%3D&md5=a21270f96c3bbaa7f53d5ed935c27d68CAS |

[18]  Y. L. Hu, J. H. Yuan, W. Chen, K. Wang, X. H. Xia, Electrochem. Commun. 2005, 7, 1252.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1alu73M&md5=2320ae120abf77d9f8ae406be5f56973CAS |

[19]  K. Z. Wang, M. A. Haga, M. D. Hossain, H. Shindo, K. Hasebe, H. Honjushiro, Langmuir 2002, 18, 3528.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVeltbs%3D&md5=258ad7691ef71db5685620bffe099f50CAS |

[20]  J. J. Walsh, J. Zhu, Q. Zeng, R. J. Forster, T. E. Keyes, Dalton Trans. 2012, 41, 9928.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFaisL7I&md5=43a45a44fe6397cdb421fca85fab4bacCAS | 22674209PubMed |

[21]  M. Kaneko, S. Teratani, K. Harashima, J. Electroanal. Chem. 1992, 325, 325.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktFGqtL0%3D&md5=d05152afd121d141821c56f862d8efecCAS |

[22]  J. Matsui, R. Kikuchi, T. Miyashita, J. Am. Chem. Soc. 2014, 136, 842.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFGqug%3D%3D&md5=aa8678e3425d5a15695f15be95cf6ce7CAS | 24380502PubMed |

[23]  K. Sone, M. Teraguchi, T. Kaneko, T. Aoki, M. Yagi, ChemPhysChem 2007, 8, 1357.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVWnu78%3D&md5=a91f08b0f97841f8a49ff92021e2f002CAS | 17503425PubMed |

[24]  K. Sone, K. Konishi, M. Yagi, Chem. – Eur. J. 2006, 12, 8558.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1yqu7bI&md5=694f2359ef2cf21ff402f068823e700aCAS | 16933345PubMed |

[25]  G. Romualdo-Torres, B. Agricole, C. Mingotaud, S. Ravaine, P. Delhaes, Langmuir 2003, 19, 4688.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtlemsL0%3D&md5=f2cf78243fb7155b5a1af8d0dcfd513aCAS |

[26]  G. R. Torres, E. Dupart, C. Mingotaud, S. Ravaine, J. Phys. Chem. B 2000, 104, 9487.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVCnur4%3D&md5=288e2ec2fe4438f69ae30d90774a9b90CAS |

[27]  C. C. Ju, H. Luo, K. Z. Wang, J. Nanosci. Nanotechnol. 2010, 10, 2053.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtlGjt7w%3D&md5=6b98650284f40c9e7bf8e10136e425bbCAS | 20355626PubMed |

[28]  G. Decher, J. D. Hong, Makromol. Chem. Macromol. Symp. 1991, 46, 321.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXms1Citbs%3D&md5=7d8129dbaf228f7a8a7045055516019aCAS |

[29]  H. Lin, Y. C. Dai, X. Chen, Q. Y. Huang, K. Z. Wang, Thin Solid Films 2013, 542, 251.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOntrjF&md5=94bdc791ba06613321d71d27444ba97bCAS |

[30]  S. Encinas, L. Flamigni, F. Barigelletti, E. C. Constable, C. E. Housecroft, E. R. Schofield, E. Figgemeier, D. Fenske, M. Neuburger, J. G. Vos, M. Zehnder, Chem. – Eur. J. 2002, 8, 137.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1ylug%3D%3D&md5=08751e63553e670a2ef80b19410ea774CAS | 11822447PubMed |

[31]  L. H. Gao, Q. L. Sun, K. Z. Wang, J. Colloid Interface Sci. 2013, 393, 92.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslCnt7rM&md5=909a110121b4d504a364040a2617f8f9CAS |

[32]  A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications 2001 (Wiley: New York, NY).

[33]  M. A. Saab, J. F. Wishart, T. H. Ghaddar, Langmuir 2007, 23, 10807.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVChs73O&md5=724aae9ce91cf805ad68d02557af2305CAS | 17877379PubMed |

[34]  Y. C. Dai, W. Yang, X. Chen, L. H. Gao, K. Z. Wang, Electrochim. Acta 2014, 134, 319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps12nt7c%3D&md5=42db469265d95a0bfe6781068b99a3f2CAS |

[35]  J. H. Wen, C. Dong, Dyestuffs and Coloration 2006, 43, 4.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GjsbzF&md5=0463c91ece5a353c8e83e6dbd89019a9CAS |

[36]  K. Z. Wang, L. H. Gao, Mater. Res. Bull. 2002, 37, 2447.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptFGlu7Y%3D&md5=3ca8f6954064d358194023879fd451b9CAS |