Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Using Carbon Quantum Dots as Selective Photoluminescent Probes for Protein Kinase Assay

Yanjun Ding A B D , Wenjing Kang C , Xianzhong Xiao A , Kangkai Wang A , Nian Wang A , HuaLi Zhang A , Minghui Yang C D and Guoli Shen B
+ Author Affiliations
- Author Affiliations

A Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410008, China.

B State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.

C Department of Chemistry and Chemical Engineering, Central South University, Changsha 410008, China.

D Corresponding authors. Email: yangminghui@csu.edu.cn; dingyanjun@csu.edu.cn

Australian Journal of Chemistry 68(8) 1249-1254 https://doi.org/10.1071/CH14554
Submitted: 13 September 2014  Accepted: 20 December 2014   Published: 23 March 2015

Abstract

A simple and sensitive fluorescent assay is developed for the detection of protein kinase A (PKA) activity based on the selective aggregation of phosphorylated peptide–carbon quantum dots (CQDs) conjugates triggered by Zr4+ ions coordination. The peptide was conjugated onto CQDs through covalent coupling. Under optimized conditions, a linear relationship between the decreases in fluorescence intensity of peptide–CQDs and the PKA concentration in the range from 0.125 to 30 U mL–1 was observed. Moreover, the inhibition effect of H-89 on the activity of PKA was studied, and the results indicated that the proposed method showed potential applications in kinase inhibitor screening.


References

[1]  L. Cao, X. Wang, M. J. Meziani, F. S. Lu, H. F. Wang, P. J. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca, D. Murray, S. Y. Xie, Y. P. Sun, J. Am. Chem. Soc. 2007, 129, 11318.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsFCjtb8%3D&md5=b2076ca44a58978471bbbba154cf513fCAS | 17722926PubMed |

[2]  S. N. Baker, G. A. Baker, Angew. Chem., Int. Ed. 2010, 49, 6726.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFGnsbnI&md5=1d35ccd0b33ab89019d72c6c8e0c587aCAS |

[3]  X. Wang, K. Qu, B. Xu, J. Ren, X. Qu, J. Mater. Chem. 2011, 21, 2445.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Sgurs%3D&md5=1fe081a86c09c8e4584a4805ada93833CAS |

[4]  Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Shiral Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, J. Am. Chem. Soc. 2006, 128, 7756.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVehur0%3D&md5=d0a46c948c49712dfef42337150d48a3CAS | 16771487PubMed |

[5]  R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, Angew. Chem., Int. Ed. 2009, 48, 4598.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  X. Y. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 2004, 126, 12736.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXns1KmtL0%3D&md5=501f944a2d4388d3633198bfafd5980eCAS |

[7]  I. P. Chang, K. C. Hwang, C. S. Chiang, J. Am. Chem. Soc. 2008, 130, 15476.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1Ohs7zP&md5=3978f16bff7b5c83f35cbcd0274dc785CAS | 18939829PubMed |

[8]  Y. Wang, L. Zhang, R. P. Liang, J. M. Bai, J. D. Qiu, Anal. Chem. 2013, 85, 9148.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVSitL%2FK&md5=9ed6d2b5184810e4b04a5a77a757bea6CAS | 24004085PubMed |

[9]  D. Zhao, W. H. Chan, Z. K. He, T. Qiu, Anal. Chem. 2009, 81, 3537.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktFWltLo%3D&md5=4cb0d001088676060b6070968eb4b7caCAS | 19351144PubMed |

[10]  I. Yildiz, M. Tomasulo, F. M. Raymo, Proc. Natl. Acad. Sci. USA 2006, 103, 11457.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFegtLw%3D&md5=65b0a2bb704e3a456b0706de3fcc6640CAS | 16861301PubMed |

[11]  C. Y. Zhang, L. W. Johnson, Anal. Chem. 2007, 79, 7775.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVChs7vM&md5=375af650706938a0c9a624b364dd9bd5CAS | 17877365PubMed |

[12]  G. Manning, D. B. Whyte, R. Martinez, T. Hunter, S. Sudarsanam, Science 2002, 298, 1912.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Wisb0%3D&md5=09bb3b00fe5215bdeb06bce3c4a345f8CAS | 12471243PubMed |

[13]  X. Zhao, I. R. León, S. Bak, M. Mogensen, K. Wrzesinski, K. Højlund, O. N. Jensen, Mol. Cell. Proteomics 2011, 10, No. M110.000299.
         | 21622897PubMed |

[14]  J. Brognard, T. Hunter, Curr. Opin. Genet. Dev. 2011, 21, 4.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFKjtbo%3D&md5=8629c1aaafd404d33f37ddd349222917CAS | 21123047PubMed |

[15]  J. E. Hutti, E. T. Jarrell, J. D. Chang, D. W. Abbott, P. Storz, A. Toker, L. C. Cantley, B. E. Turk, Nat. Methods 2004, 1, 27.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVGgt7s%3D&md5=219041974d3bbcf3c1cd0e70d61ac35fCAS | 15782149PubMed |

[16]  C. L. Wang, L. Y. Wei, C. J. Yuan, K. C. Hwang, Anal. Chem. 2012, 84, 971.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GlsLbK&md5=f149b36d442a1722b37722ada86f5297CAS | 22208917PubMed |

[17]  T. Yoshida, M. Sato, T. Ozawa, Y. Umezawa, Anal. Chem. 2000, 72, 6.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFOlsrg%3D&md5=2722e7137339d60f6b8bfbdef48b01e6CAS | 10655627PubMed |

[18]  T. Li, D. Liu, Z. Wang, Anal. Chem. 2010, 82, 3067.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXisl2jsL0%3D&md5=e238db67a01a2d6a7655f0d1edfaab13CAS | 20201592PubMed |

[19]  S. Gupta, H. Andresen, M. M. Stevens, Chem. Commun. 2011, 47, 2249.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1aqurw%3D&md5=8eb9bab3c41d1a3343804bccb21102b8CAS |

[20]  H. Peng, J. Travas-Sejdic, Chem. Mater. 2009, 21, 5563.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlKrsbjN&md5=fe3416b842c6fc089283dae510e25c7eCAS |

[21]  H. J. Sun, N. Gao, L. Wu, J. S. Ren, W. L. Wei, X. G. Qu, Chem. – Eur. J. 2013, 19, 13362.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Crt7zP&md5=c6dfb6e5925f07dee06d8e9b480eb49dCAS |

[22]  M. Zhang, H. Fabian, H. H. Mantsch, H. J. Vogel, Biochemistry 1994, 33, 10883.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmvFGkt7k%3D&md5=0643858d8966ea42dd50d8a28b3e6495CAS | 7522050PubMed |

[23]  J. Bai, Y. J. Zhao, Z. B. Wang, C. H. Liu, Y. C. Wang, Z. P. Li, Anal. Chem. 2013, 85, 4813.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVynsrc%3D&md5=b96dc6853ff7945835aa1ece1b91e958CAS | 23581884PubMed |