Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis and Characterization of Mesoporous Tin Oxide-Functionalized Reduced Graphene Oxide Nanoplatelets for Ultrasensitive Detection of Guaiacol in Red Wines

Tian Gan A B , Zhaoxia Shi A , Kaili Wang A , Junyong Sun A , Zhen Lv A and Yanming Liu A
+ Author Affiliations
- Author Affiliations

A College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.

B Corresponding author. Email: gantianxynu@163.com

Australian Journal of Chemistry 69(2) 220-229 https://doi.org/10.1071/CH15163
Submitted: 6 April 2015  Accepted: 11 July 2015   Published: 5 August 2015

Abstract

This work describes for the first time the use of mesoporous tin oxide-functionalized reduced graphene oxide (SnO2-rGO) as electrode modifier in combination with differential pulse voltammetry techniques for preconcentration and detection of guaiacol in red wine samples. SnO2-rGO was prepared through in situ growth of SnO2 particles on the rGO surface using cetyltrimethylammonium bromide as the structure-directing agent. Using the best set of experimental conditions, a linear response for guaiacol in the concentration range of 0.05 to 60 μM with a limit of detection of 7.2 nM (signal-to-noise ratio = 3) was obtained. Finally, the method was successfully applied to determine guaiacol in red wine samples, and the contents closely corresponded to those obtained by the reported chromatographic method.


References

[1]  A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Khtrg%3D&md5=eb05cea8763f0e0b86516f66d2fdc3bbCAS | 17330084PubMed |

[2]  G. Le Lay, E. Salomon, P. De Padova, J. M. Layet, T. Angot, Aust. J. Chem. 2014, 67, 1370.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsleks73P&md5=a44082f5aefea2e45945f1cd6b4ce5e1CAS |

[3]  J. F. Wang, T. Tsuzuki, B. Tang, L. Sun, X. J. J. Dai, G. D. Rajmohan, J. L. Li, X. G. Wang, Aust. J. Chem. 2014, 67, 71.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  A. B. P. Jimenez, C. A. H. Aguilar, J. M. V. Ramos, P. Thangarasu, Aust. J. Chem. 2015, 68, 288.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXit12mtLs%3D&md5=e91e6a55b2d6313979d4de16a5d8b83cCAS |

[5]  R. G. Gordon, MRS Bull. 2000, 25, 52.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsFSlsL8%3D&md5=0a49393fb820f06306a993158e44c6d8CAS |

[6]  A. Bhaskar, M. Deepa, T. N. Rao, Nanoscale 2014, 6, 10762.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFWhs77P&md5=23ff51c91f5fd9d9f5c7c9bd7a0a7caeCAS | 25100202PubMed |

[7]  W. Q. Li, S. Y. Ma, J. Luo, Y. Z. Mao, L. Cheng, D. J. Gengzang, X. L. Xu, S. H. Yan, Mater. Lett. 2014, 132, 338.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOkurbN&md5=653255c6186391ac0b4ed3a31667fe5bCAS |

[8]  Z. Y. Li, X. G. Wang, T. Lin, J. Mater. Chem. A 2014, 2, 13655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtVarsLbJ&md5=9695cef139731d53112f23688a9c5891CAS |

[9]  C. Scholtes, S. Nizet, S. Collin, J. Agric. Food Chem. 2014, 62, 9522.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVCms77N&md5=3b8afcbd90fa002d635f92bf8da2fa49CAS | 25174984PubMed |

[10]  J. Kheir, D. Salameh, P. Strehaiano, C. Brandam, R. Lteif, Eur. Food Res. Technol. 2013, 237, 655.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1eitrzN&md5=f57ab1435a901146ffb2138c14264187CAS |

[11]  Ó Ezquerro, Á Garrido-López, M. T. Tena, J. Chromatogr. A 2006, 1102, 18.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlagsr3M&md5=3d3a3874dd295baffa803ec23d7cb2f5CAS | 16257409PubMed |

[12]  I. Jarauta, J. Cacho, V. Ferreira, J. Agric. Food Chem. 2005, 53, 4166.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFeiu7g%3D&md5=bc7d82f69bed241f9967be7083854c0eCAS | 15884855PubMed |

[13]  X. C. Huang, C. F. Guo, Y. H. Yuan, X. X. Luo, T. L. Yue, Food Control 2015, 51, 270.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFShs7rO&md5=b033d79db261cc2928b0373957ed2fe6CAS |

[14]  J. Vichapong, Y. Santaladchaiyakit, R. Burakham, S. Srijaranai, J. Food Sci. Technol. 2014, 51, 664.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVChurk%3D&md5=38c59d34afe41fae79d93dc5d5a5edebCAS | 24741159PubMed |

[15]  Y. T. Lin, H. S. Hwang, H. L. Wu, Electrophoresis 2008, 29, 3524.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1SntrvK&md5=8b0d196f9e47598940a5c58a53cab1c1CAS | 18803215PubMed |

[16]  T. Gan, Z. X. Shi, Y. P. Deng, J. Y. Sun, H. B. Wang, Electrochim. Acta 2014, 147, 157.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1WqsL%2FJ&md5=8daf937c3d7e5cae727ba9a28c42fa96CAS |

[17]  Y. Wu, M. Huang, N. N. Song, W. B. Hu, Anal. Methods 2014, 6, 2729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXls1Wgs7w%3D&md5=034fc68286f556a202846d4ea24dc73dCAS |

[18]  R. S. Freire, N. Durán, L. T. Kubota, J. Braz. Chem. Soc. 2002, 13, 456.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFGju7o%3D&md5=d5eb26046d4ceeb1811f94fe46291018CAS |

[19]  S. Korkut, B. Keskinler, E. Erhan, Talanta 2008, 76, 1147.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOmtb3M&md5=4affda6f7f860cfa87083f4a28a7da75CAS | 18761169PubMed |

[20]  R. S. Freire, N. Duran, J. Wang, L. T. Kubota, Anal. Lett. 2002, 35, 29.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhtlahu7s%3D&md5=01576c84298acf1a8bd6bc683f8e69b8CAS |

[21]  D. Brondani, B. Souza, B. S. Souza, A. Neves, I. C. Vieira, Biosens. Bioelectron. 2013, 42, 242.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXisVOgtL4%3D&md5=1ab9a4ce80db96eddf9a5f1016dfef79CAS | 23208093PubMed |

[22]  S. Chawla, R. Rawal, D. Kumar, C. S. Pundir, Anal. Biochem. 2012, 430, 16.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVaqtL%2FK&md5=5389675304b5b1bb8201103cb8db2d17CAS | 22863983PubMed |

[23]  S. Chawla, R. Rawal, C. S. Pundir, J. Biotechnol. 2011, 156, 39.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFynurrL&md5=80087c21a8ec6ce607ef99b19ae5b4b2CAS | 21864588PubMed |

[24]  D. Kelly, A. Zerihun, Y. Hayasaka, M. Gibberd, Aust. J. Grape Wine Res. 2014, 20, 386.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1OitL%2FO&md5=2001f1187ea0122199e54b93628dc431CAS |

[25]  F. Sarni, M. Moutounet, J. L. Puech, P. Rabier, Holzforschung 1990, 44, 461.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsVGntg%3D%3D&md5=872162008e9d657e5cef83e633118ad7CAS |

[26]  P. Chatonnet, D. Dubourdieu, J. Agric. Food Chem. 1999, 47, 4319.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslOmsbk%3D&md5=0115479f20728c96499c09aff8ed1437CAS | 10552808PubMed |

[27]  R. F. Simpson, J. M. Amon, A. J. Daw, Food Technol. Aust. 1986, 38, 31.
         | 1:CAS:528:DyaL28XhtVOrsbw%3D&md5=f6c22c34a842bbb714c69f641daaec82CAS |

[28]  R. Pasricha, S. Gupta, A. K. Srivastava, Small 2009, 5, 2253.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1ynur7K&md5=fac8edc6d86db3aacc839798f205e35fCAS | 19582730PubMed |

[29]  C. Z. Zhu, J. F. Zhai, D. Wen, S. J. Dong, J. Mater. Chem. 2012, 22, 6300.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlKgtLk%3D&md5=0b67979d527f314181d24fa753845768CAS |

[30]  C. Nethravathi, M. Rajamathi, Carbon 2008, 46, 1994.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1KltrrL&md5=f880dfb3276c13cf7664134fa67d6e04CAS |

[31]  Y. M. Li, X. J. Lv, J. Lu, J. H. Li, J. Phys. Chem. C 2010, 114, 21770.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSisbvP&md5=f8a762f47f969605c3f9146a4e7b8804CAS |

[32]  J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, S. T. Lee, J. Phys. Chem. B 2002, 106, 3823.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVKrtrg%3D&md5=c6e9c6737e6e03ae2eb24a8453d6ca0dCAS |

[33]  E. Laviron, J. Electroanal. Chem. Interfacial Electrochem. 1974, 52, 355.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2cXktlamur0%3D&md5=6d72f9226a0322149afa0167a3041695CAS |

[34]  F. C. Anson, Anal. Chem. 1964, 36, 932.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2cXktV2ms70%3D&md5=74e714d287115fdf01d23754f652ebd9CAS |

[35]  L. E. Briand, J. M. Jehng, L. Cornaglia, A. M. Hirt, I. E. Wachs, Catal. Today 2003, 78, 257.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXitFGqtbc%3D&md5=3de62330b78138044c24505dc08d8708CAS |

[36]  O. Lasekan, LWT - Food Sci. Technol. 2012, 46, 536.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOit70%3D&md5=ee4706e0aaca452171f42ab0ceb5a51dCAS |

[37]  T. S. Sreeprasad, A. K. Samal, T. Pradeep, J. Phys. Chem. C 2009, 113, 1727.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtVaktw%3D%3D&md5=6c474d5ba7a2717334917e64b06bd865CAS |