Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Carbon-Doped Hollow Titania with Tuneable Shell Architecture for Supercapacitors

Juanrong Chen A , Fengxian Qiu B D , Ying Zhang C and Shunsheng Cao C
+ Author Affiliations
- Author Affiliations

A School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.

B School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.

C School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.

D Corresponding author. Email: fxqiuchem@163.com

Australian Journal of Chemistry 69(2) 183-190 https://doi.org/10.1071/CH15278
Submitted: 15 May 2015  Accepted: 5 July 2015   Published: 29 July 2015

Abstract

A new trend in supercapacitor research has focussed on the construction of inexpensive electrode materials with high capacitor performances. In this study, we demonstrate the successful preparation of carbon-doped hollow titania spheres. The as-prepared titania spheres not only exhibit an advantage over existing methods because they are created in situ by directly carbonizing cationic polystyrene templates without the addition of carbon precursors, but also feature a narrow pore size distribution and a tuneable shell architecture. When the materials were applied as supercapacitor anodes, the electrochemical results reveal the superior performances of the supercapacitors over that of commercial P25. The higher performances were attributed to carbon doping. Thus, the reported C-doped hollow titania shows more potential as electrode materials for high-performance supercapacitors.


References

[1]  B. Chen, J. Hou, K. Lu, Langmuir 2013, 29, 5911.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVygtbo%3D&md5=202c4b7bd8130611dd1ad7fb793f74f2CAS | 23594047PubMed |

[2]  Y. Luo, D. Kong, J. Luo, S. Chen, D. Zhang, K. Qiu, X. Qi, H. Zhang, C. M. Li, T. Yu, RSC Adv. 2013, 3, 14413.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WitLzO&md5=bf25bf22a86c9aef36b2eb9c8ac9d148CAS |

[3]  X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, Adv. Mater. 2013, 25, 267.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFGjtLjO&md5=94ff9b3cbf30efb10ed9aeae1f1d932dCAS | 23080535PubMed |

[4]  P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12jtb%2FM&md5=23d8c958a48f16fc29072752210dd6b9CAS | 18956000PubMed |

[5]  J. R. Miller, P. Simon, Science 2008, 321, 651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpslagtrY%3D&md5=c74609fd88c910c9dadb1d0adf200ac0CAS | 18669852PubMed |

[6]  H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H. S. Casalongue, H. Dai, Nano Res. 2011, 4, 729.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVymtb8%3D&md5=2bdbab2a71e5ab85684ec5933359f09eCAS |

[7]  J. H. Kim, K. Zhu, Y. Yan, C. L. Perkins, A. J. Frank, Nano Lett. 2010, 10, 4099.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ahurbP&md5=34940efd9fbebddedaff99736dd7eee2CAS | 20873847PubMed |

[8]  X. Xia, D. Chao, Z. Fan, C. Guan, X. Cao, H. Zhang, H. J. Fan, Nano Lett. 2014, 14, 1651.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXis1emsLs%3D&md5=9632a600d0b50d7e0af2b2a0ccc9a083CAS | 24548206PubMed |

[9]  M. Salari, K. Konstantinov, H. K. Liu, J. Mater. Chem. 2011, 21, 5128.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjt12rtLY%3D&md5=96763154ef76d2bc3ef815058f868240CAS |

[10]  Y. Zhang, Z. Zhao, J. Chen, L. Chen, J. Chang, W. Sheng, C. Hu, S. Cao, Appl. Catal., B 2015, 165, 715.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVygsbnM&md5=8331a10d297b99b485efe8094d7ffed8CAS |

[11]  J. Chen, F. Qiu, W. Xu, S. Cao, H. Zhu, Appl. Catal., A 2015, 495, 131.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjt1altb4%3D&md5=2eab8d104e65454e0577bd6b29d299c7CAS |

[12]  J. Qiu, S. Li, E. Gray, H. Liu, Q. Gu, C. Sun, C. Lai, H. Zhao, S. Zhang, J. Phys. Chem. C 2014, 118, 8824.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmtVOhtrw%3D&md5=b1043f315ef004f4af1e50a538e4a6b3CAS |

[13]  A. Ramadoss, S. J. Kim, Carbon 2013, 63, 434.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFKlt77L&md5=b117e5b85185f980b2d59a1a94310f8aCAS |

[14]  J. Y. Shin, J. H. Joo, D. Samuelis, J. Maier, Chem. Mater. 2012, 24, 543.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Cjt7jM&md5=db39e1378604d4abc9f3813a24db8c1bCAS |

[15]  H. Li, Z. Chen, C. K. Tsang, Z. Li, X. Ran, C. Lee, B. Nie, L. Zheng, T. Hung, J. Lu, B. Pan, Y. Y. Li, J. Mater. Chem. A 2014, 2, 229.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVGkt7jP&md5=e352c76afc2880e0a669a36de1c0b001CAS |

[16]  X. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science 2011, 331, 746.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yrsrg%3D&md5=3492b4035bf6de8e976c457fb4570318CAS | 21252313PubMed |

[17]  C. Zhao, L. Liu, Q. Zhang, J. Rogers, H. Zhao, Y. Li, Electrochim. Acta 2015, 155, 288.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVOgtg%3D%3D&md5=48d0d89cc21fc0127c274b68b957baf4CAS |

[18]  Q. Tan, Y. Xu, J. Yang, L. Qiu, Y. Chen, X. Chen, Electrochim. Acta 2013, 88, 526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSgsLc%3D&md5=a0bed46a0f6e3d27f47b17aaa6684246CAS |

[19]  W. Li, F. Wang, Y. Liu, J. Wang, J. Yang, L. Zhang, A. A. Elzatahry, D. Al-Dahyan, Y. Xia, D. Zhao, Nano Lett. 2015, 15, 2186.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtF2lurw%3D&md5=23a965dadf80ebe04c8f33ea284cd253CAS | 25705819PubMed |

[20]  L. Yan, Y. Xu, M. Zhou, G. Chen, S. Deng, S. Smirnov, H. Luo, G. Zou, Electrochim. Acta 2015, 169, 73.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmsVWqtbc%3D&md5=accffc7e13f4d2fe1fe87db21e3aa003CAS |

[21]  L. Zhang, M. Tse, O. Tan, Y. Wang, M. Han, J. Mater. Chem. A 2013, 1, 4497.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVCku7g%3D&md5=1529e58d3f41f15bebeb4cc94bd6b23bCAS |

[22]  S. Lee, Y. Lee, D. H. Kim, J. Moon, ACS Appl. Mater. Interfaces 2013, 5, 12526.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVars7zM&md5=5dfe1d8db1d4f97e5a76416f5c91cb15CAS | 24266769PubMed |

[23]  L. Quan, Y. Jang, K. Stoerzinger, K. May, Y. Jang, S. Kochuveedu, Y. S. Horn, D. H. Kim, Phys. Chem. Chem. Phys. 2014, 16, 9023.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmt1Whur0%3D&md5=b5653af2ced6ec7979eb8e617484830eCAS | 24695759PubMed |

[24]  S. Cao, L. Fang, Z. Zhao, Y. Ge, S. Piletsky, A. P. F. Turner, Adv. Funct. Mater. 2013, 23, 2162.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslejtL7E&md5=8179524b5db8dda03ec2ff2d6d6b2da5CAS |

[25]  S. Cao, J. Chen, Y. Ge, L. Fang, Y. Zhang, A. P. F. Turner, Chem. Commun. 2014, 50, 118.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKjt7fM&md5=2d1f22ee13b7b65f1a524319b327aedaCAS |

[26]  S. Cao, Z. Zhao, X. Jin, W. Sheng, S. Li, Y. Ge, M. Dong, L. Fang, J. Mater. Chem. 2011, 21, 19124.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFahsr7I&md5=b33abcdc506d8fb8ddc16a9b99fdf041CAS |

[27]  H. Chen, L. F. Hu, Y. Yan, R. C. Che, M. Chen, L. M. Wu, Adv. Energy Mater. 2013, 3, 1636.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2itbvN&md5=ccf550a2f7e95cbe4cab1ca63b9fd2e5CAS |

[28]  J. Yan, Z. J. Fan, W. Sun, G. Q. Ning, T. Wei, Q. Zhang, R. F. Zhang, L. J. Zhi, F. Wei, Adv. Funct. Mater. 2012, 22, 2632.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksV2nsr8%3D&md5=0ce0b182d991d3892bfa931d2803c982CAS |

[29]  H. Chen, L. F. Hu, M. Chen, Y. Yan, L. M. Wu, Adv. Funct. Mater. 2014, 24, 934.
         | Crossref | GoogleScholarGoogle Scholar |

[30]  S. Cao, Y. Zhang, L. Zhu, J. Chen, L. Fang, F. Dan, H. Zhu, Y. Ge, J. Mater. Chem. B 2014, 2, 7243.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVSitbbI&md5=cf1327203f40cb8b949a0c1812f1e434CAS |

[31]  B. Li, Z. Zhao, F. Gao, X. Wang, J. Qiu, Appl. Catal., B 2014, 147, 958.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOjtbrK&md5=fb5f6d343362b6715ec90251a69bc670CAS |

[32]  P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, Nanoscale 2011, 3, 2943.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVahtbs%3D&md5=f902a19b028cb90a42f75cba79c728f1CAS | 21629901PubMed |

[33]  E. M. Neville, M. J. Mattle, D. Loughrey, B. Rajesh, M. Rahman, J. M. Don MacElroy, J. A. Sullivan, K. R. Thampi, J. Phys. Chem. C 2012, 116, 16511.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVejurfL&md5=67e80e2d889d632289c9fed9454db398CAS |

[34]  S. In, A. Kean, A. Orlov, M. Tikhov, R. Lambert, Energy Environ. Sci. 2009, 2, 1277.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFajsL8%3D&md5=4d3da1c509550e3bf06f8385fba2d4a9CAS |

[35]  Q. Wang, Z. Wen, J. Li, Adv. Funct. Mater. 2006, 16, 2141.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WhtLvP&md5=c36fba3155d53143ee63df4208f574f5CAS |

[36]  M. Salari, S. H. Aboutalebi, K. Konstantinov, H. K. Liu, Phys. Chem. Chem. Phys. 2011, 13, 5038.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1Cksb0%3D&md5=140fad40adddd055ea4b0a6721692a95CAS | 21293791PubMed |

[37]  S. Y. Kim, H. M. Jeong, J. H. Kwon, I. W. Ock, W. H. Suh, G. D. Stucky, J. K. Kang, Energy Environ. Sci. 2015, 8, 188.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslais73P&md5=c97f9ca0981da9797ca085ad7394996aCAS |

[38]  X. M. Li, L. F. Jiang, C. Zhou, J. P. Liu, H. B. Zeng, NPG Asia Mater. 2015, 7, e165.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjvFOht7k%3D&md5=f7d4d840aff51bb5c3726c8df592ea7eCAS |

[39]  Y. N. Yan, T. Kuila, N. H. Kim, B. C. Ku, J. H. Lee, J. Mater. Chem. A 2013, 1, 5892.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFektL8%3D&md5=00a2b0bc5a9eda8c6f13d6914c0a37bbCAS |

[40]  H. Kim, M. E. Fortunato, H. Xu, J. H. Bang, K. S. Suslick, J. Phys. Chem. C 2011, 115, 20481.
         | Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1KktbvP&md5=0154bd6977e0b652358880cd4c57f18eCAS |