Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Transition Metal-Promoted Arylation: An Emerging Strategy for Protein Bioconjugation*

Lara R. Malins
+ Author Affiliations
- Author Affiliations

Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. Email: malins@scripps.edu

Australian Journal of Chemistry 69(12) 1360-1364 https://doi.org/10.1071/CH16416
Submitted: 18 July 2016  Accepted: 12 September 2016   Published: 10 October 2016

Abstract

Transition metal-mediated arylation chemistry is emerging as a powerful tool for the selective modification of native peptides and proteins, providing new opportunities in the field of bioconjugation. This highlight paper will summarize recent methodologies for the regio- and chemoselective arylation of select proteinogenic side chains and backbone amide N–H bonds within unprotected peptides and proteins. The importance of the metal–ligand complex in achieving tunable selectivity and the inherent benefits of arylation as a mode of covalent protein modification will be highlighted.


References

[1]  (a) C. D. Spicer, B. G. Davis, Nat. Commun. 2014, 4740.
         | CrossRef | 1:CAS:528:DC%2BC2MXksVeksb4%3D&md5=cc74f3b2512ff075852d437738a0c2efCAS | 25190082PubMed |
      (b) O. Boutureira, G. J. Bernardes, Chem. Rev. 2015, 115, 2174.
         | CrossRef |

[2]  R. V. J. Chari, M. L. Miller, W. C. Widdison, Angew. Chem. Int. Ed. 2014, 53, 3796.
         | CrossRef | 1:CAS:528:DC%2BC2cXjtVGmsr0%3D&md5=6189adad9463d03421d6df26cd02bf1bCAS |

[3]  Y. H. Lau, P. de Andrade, Y. Wu, D. R. Spring, Chem. Soc. Rev. 2015, 44, 91.
         | CrossRef | 1:CAS:528:DC%2BC2cXhsV2mtb%2FL&md5=ceeb62c0c4c96ac750ea9a37bf80e00bCAS | 25199043PubMed |

[4]     (a) C. Walsh, Post-Translational Modification of Proteins: Expanding Nature’s Inventory 2006 (Roberts and Co. Publishers: Englewood, CO).
      (b) C. T. Walsh, S. Garneau-Tsodikova, G. J. Gatto, Angew. Chem. Int. Ed. 2005, 44, 7342.
         | CrossRef |

[5]  N. Stephanopoulos, M. B. Francis, Nat. Chem. Biol. 2011, 7, 876.
         | CrossRef | 1:CAS:528:DC%2BC3MXhsVOisbbP&md5=429f41e33de8af0251aa81269b7b7ad1CAS | 22086289PubMed |

[6]     (a) G. T. Hermanson, Bioconjugate Techniques (3rd edn) 2013 (Academic Press: Boston, MA).
         (b) G. J. L. Bernardes, J. M. Chalker, B. G. Davis, in Ideas in Chemistry and Molecular Sciences (Ed. B. Pignataro) 2010, pp. 59–91 (Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim).

[7]  (a) K. Lang, J. W. Chin, Chem. Rev. 2014, 114, 4764.
         | CrossRef | 1:CAS:528:DC%2BC2cXkslamtrY%3D&md5=769f3507405299b28fe5c2086605d592CAS | 24655057PubMed |
      (b) W. H. Zhang, G. Otting, C. J. Jackson, Curr. Opin. Struct. Biol. 2013, 23, 581.
         | CrossRef |
      (c) E. M. Sletten, C. R. Bertozzi, Angew. Chem. Int. Ed. 2009, 48, 6974.
         | CrossRef |
      (d) C. H. Kim, J. Y. Axup, P. G. Schultz, Curr. Opin. Chem. Biol. 2013, 17, 412.
         | CrossRef |

[8]  V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596.
         | CrossRef | 1:CAS:528:DC%2BD38Xls1Ohsr4%3D&md5=fe9f6b13c78335a5d346bc92864dea5dCAS |

[9]  Y. A. Lin, J. M. Chalker, B. G. Davis, ChemBioChem 2009, 10, 959.
         | CrossRef | 1:CAS:528:DC%2BD1MXltVOlt7g%3D&md5=2ab29a3375d63cf0426011ac4a4b5226CAS | 19343741PubMed |

[10]  J. M. McFarland, M. B. Francis, J. Am. Chem. Soc. 2005, 127, 13490.
         | CrossRef | 1:CAS:528:DC%2BD2MXpslequrk%3D&md5=d6f8a2a0a81c361f51a8edf1acff0d69CAS | 16190700PubMed |

[11]  S. D. Tilley, M. B. Francis, J. Am. Chem. Soc. 2006, 128, 1080.
         | CrossRef | 1:CAS:528:DC%2BD28XitVymsw%3D%3D&md5=589aa5537e4affc148afbe1872103679CAS | 16433516PubMed |

[12]  J. M. Antos, M. B. Francis, J. Am. Chem. Soc. 2004, 126, 10256.
         | CrossRef | 1:CAS:528:DC%2BD2cXmtVOjtrc%3D&md5=d48de9fb95ac241874a507bf9df55f78CAS | 15315433PubMed |

[13]  (a) J. M. Antos, M. B. Francis, Curr. Opin. Chem. Biol. 2006, 10, 253.
         | CrossRef | 1:CAS:528:DC%2BD28XltlKkt7c%3D&md5=c37c18dd4ffee417a7b9b6a13ab027d3CAS | 16698310PubMed |
      (b) J. H. van Maarseveen, J. N. Reek, J. W. Back, Angew. Chem. Int. Ed. 2006, 45, 1841.
         | CrossRef |
      (c) M. Yang, J. Li, P. R. Chen, Chem. Soc. Rev. 2014, 43, 6511.
         | CrossRef |
      (d) A. F. Noisier, M. A. Brimble, Chem. Rev. 2014, 114, 8775.
         | CrossRef |

[14]  (a) A. M. Spokoyny, Y. Zou, J. J. Ling, H. Yu, Y. S. Lin, B. L. Pentelute, J. Am. Chem. Soc. 2013, 135, 5946.
         | CrossRef | 1:CAS:528:DC%2BC3sXlsV2gtrc%3D&md5=2266a9d99a353bd9cb567db56a5a24bcCAS | 23560559PubMed |
      (b) S. P. Brown, A. B. Smith, J. Am. Chem. Soc. 2015, 137, 4034.
         | CrossRef |
      (c) G. Lautrette, F. Touti, H. G. Lee, P. Dai, B. L. Pentelute, J. Am. Chem. Soc. 2016, 138, 8340.
         | CrossRef |
      (d) C. Zhang, M. Welborn, T. Zhu, N. J. Yang, M. S. Santos, T. Van Voorhis, B. L. Pentelute, Nat. Chem. 2016, 8, 120.
         | CrossRef |
      (e) S. Kalhor-Monfared, M. R. Jafari, J. T. Patterson, P. I. Kitov, J. J. Dwyer, J. M. Nuss, R. Derda, Chem. Sci. 2016, 7, 3785.
         | CrossRef |

[15]  E. V. Vinogradova, C. Zhang, A. M. Spokoyny, B. L. Pentelute, S. L. Buchwald, Nature 2015, 526, 687.
         | CrossRef | 1:CAS:528:DC%2BC2MXhslCnu7zK&md5=309e6582a882d9248aaeb2be85f6450cCAS | 26511579PubMed |

[16]  J. Willwacher, R. Raj, S. Mohammed, B. G. Davis, J. Am. Chem. Soc. 2016, 138, 8678.
         | CrossRef | 1:CAS:528:DC%2BC28XhtVGjtLrF&md5=f955cfa383491a169a347f8978bb1069CAS | 27336299PubMed |

[17]  A. Bock, K. Forchhammer, J. Heider, W. Leinfelder, G. Sawers, B. Veprek, F. Zinoni, Mol. Microbiol. 1991, 5, 515.
         | CrossRef | 1:STN:280:DyaK3M3mtVCgtw%3D%3D&md5=e7131a81cedc2ce49cdb6af9652b31b1CAS | 1828528PubMed |

[18]  B. J. Byun, Y. K. Kang, Biopolymers 2011, 95, 345.
         | CrossRef | 1:CAS:528:DC%2BC3MXitlKrtrc%3D&md5=8248b9194895a247178ebab1b0323f76CAS | 21213257PubMed |

[19]  (a) L. Johansson, G. Gafvelin, E. S. J. Arner, Biochim. Biophys. Acta, Gen. Subj. 2005, 1726, 1.
         | CrossRef | 1:CAS:528:DC%2BD2MXhtFKns7fE&md5=47b9445d6fd17d720520d5cc1adfccb2CAS |
      (b) J. Lu, A. Holmgren, J. Biol. Chem. 2009, 284, 723.
         | CrossRef |

[20]  (a) L. R. Malins, N. J. Mitchell, R. J. Payne, J. Pept. Sci. 2014, 20, 64.
         | CrossRef | 1:CAS:528:DC%2BC3sXhvVGgtLzP&md5=20a1aff93d0c22a6ad44b5b4a318a7acCAS | 24285588PubMed |
      (b) D. Besse, F. Siedler, T. Diercks, H. Kessler, L. Moroder, Angew. Chem. Int. Ed. Engl. 1997, 36, 883.
         | CrossRef |
      (c) T. Nauser, S. Dockheer, R. Kissner, W. H. Koppenol, Biochemistry 2006, 45, 6038.
         | CrossRef |

[21]  D. T. Cohen, C. Zhang, B. L. Pentelute, S. L. Buchwald, J. Am. Chem. Soc. 2015, 137, 9784.
         | CrossRef | 1:CAS:528:DC%2BC2MXht1KmsrnK&md5=26a04177710e07a219becda80b2ec853CAS | 26225900PubMed |

[22]  J. Ohata, M. B. Minus, M. E. Abernathy, Z. T. Ball, J. Am. Chem. Soc. 2016, 138, 7472.
         | CrossRef | 1:CAS:528:DC%2BC28XptVKrur4%3D&md5=f9cb4a6277974c655b0f39696eb2d008CAS | 27249339PubMed |

[23]  (a) U. Kazmaier, J. Deska, Curr. Org. Chem. 2008, 12, 355.
         | CrossRef |
      (b) J. Chatterjee, F. Rechenmacher, H. Kessler, Angew. Chem. Int. Ed. 2013, 52, 254.
         | CrossRef |


Full Text PDF (485 KB) Export Citation Cited By (3)