Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Dehydrogenative Coupling of Hydrosilanes and Alcohols by Alkali Metal Catalysts for Facile Synthesis of Silyl Ethers

Adimulam Harinath A , Jayeeta Bhattacharjee A , Srinivas Anga A and Tarun K. Panda A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, Telangana, India.

B Corresponding author. Email: tpanda@iith.ac.in

Australian Journal of Chemistry 70(6) 724-730 https://doi.org/10.1071/CH16537
Submitted: 25 September 2016  Accepted: 26 October 2016   Published: 25 November 2016

Abstract

Cross-dehydrogenative coupling (CDC) of hydrosilanes with hydroxyl groups, using alkali metal hexamethyldisilazide as a single-component catalyst for the formation of Si–O bonds under mild condition, is reported. The potassium salt [KN(SiMe3)2] is highly efficient and chemoselective for a wide range of functionalized alcohols (99 % conversion) under solvent-free conditions. The CDC reaction of alcohols with silanes exhibits first-order kinetics with respect to both catalyst and substrate concentrations. The most plausible mechanism for this reaction suggests that the initial step most likely involves the formation of an alkoxide followed by the formation of metal hydride as active species.


References

[1]  T. W. Greene, P. G. Wuts, Protective Groups in Organic Synthesis, 2nd edn, Vol. 23 1991 (John Wiley and Sons: New York, NY).

[2]  P. D. Lickiss, Adv. Inorg. Chem. 1995, 42, 147.
         | CrossRef | 1:CAS:528:DyaK2MXovVSrsLc%3D&md5=73b62dbb7a7507aa67b3de5296f83591CAS | open url image1

[3]  (a) F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angew. Chem., Int. Ed. 2006, 118, 3290.
         | CrossRef | open url image1
      (b) N. Mizoshita, T. Tani, S. Inagaki, Chem. Soc. Rev. 2011, 40, 789.
         | CrossRef | open url image1
      (c) F. Hoffmann, M. Froba, Chem. Soc. Rev. 2011, 40, 608.
         | CrossRef | open url image1

[4]  C. Lorenz, U. Schubert, Chem. Ber. 1995, 128, 1267.
         | CrossRef | 1:CAS:528:DyaK2MXhtVSlsbjM&md5=d7433c3f1d328e89eee95a304a1546a6CAS | open url image1

[5]  E. Pouget, J. Tonnar, P. Lucas, P. Lacroix-Desmazes, F. Ganachaud, B. Boutevin, Chem. Rev. 2010, 110, 1233.
         | CrossRef | 1:CAS:528:DC%2BD1MXhsFGhtLrE&md5=28f14c897365168f823ac3418388d434CAS | open url image1

[6]  (a) S. Kim, H. Chang, Synth. Commun. 1984, 14, 899.
         | CrossRef | 1:CAS:528:DyaL2cXmtFWhtrs%3D&md5=cc4ee076639a04a167c9b364bb1f5e35CAS | open url image1
      (b) S. K. Chaudhary, O. Hernandez, Tetrahedron Lett. 1979, 20, 99.
         | CrossRef | open url image1

[7]  X. L. Luo, R. H. Crabtree, J. Am. Chem. Soc. 1989, 111, 2527.
         | CrossRef | 1:CAS:528:DyaL1MXhsFCgurw%3D&md5=e2f61708fe8491d501e6b6fd76dae551CAS | open url image1

[8]  (a) S. Xin, J. F. Harrod, J. Organomet. Chem. 1995, 499, 181.
         | CrossRef | 1:CAS:528:DyaK2MXnslylsb8%3D&md5=df5c74212e4911d9a86708332b3cae9eCAS | open url image1
      (b) T. C. Bedard, J. Y. Corey, J. Organomet. Chem. 1992, 428, 315.
         | CrossRef | open url image1
      (c) E. Peterson, A. Y. Khalimon, R. Simionescu, L. G. Kuzmina, J. A. K. Howard, G. I. Nikonov, J. Am. Chem. Soc. 2009, 131, 908.
         | CrossRef | open url image1

[9]  (a) S. Vijjamarri, V. K. Chidara, J. Rousova, G. Du, Catal. Sci. Technol. 2016, 6, 3886.
         | CrossRef | 1:CAS:528:DC%2BC28XovVKksw%3D%3D&md5=d8bfd7aec5d71eeb851e8ce71c8a7129CAS | open url image1
      (b) B. T. Gregg, A. R. Cutler, Organometallics 1993, 12, 2006.
         | CrossRef | open url image1

[10]  R. A. Corbin, E. A. Ison, M. M. Abu-Omar, Dalton Trans. 2009, 2850.
         | CrossRef | 1:CAS:528:DC%2BD1MXjslKjurw%3D&md5=6717bfc4571cf13ac3dffb6c9fb0d420CAS | open url image1

[11]  J. M. S. Cardoso, R. Lopes, B. Royo, J. Organomet. Chem. 2015, 775, 173.
         | CrossRef | 1:CAS:528:DC%2BC2cXhtVCqt7%2FK&md5=1598a0fa1deb780330d941170a795ad6CAS | open url image1

[12]  (a) M. K. Chung, G. Ferguson, V. Robertson, M. Schlaf, Can. J. Chem. 2001, 79, 949.
         | CrossRef | 1:CAS:528:DC%2BD3MXmsVakt78%3D&md5=ec930c3fc56b5a57403342cc0eacee1fCAS | open url image1
      (b) S. V. Maifeld, R. L. Miller, D. Lee, Tetrahedron Lett. 2002, 43, 6363.
         | CrossRef | open url image1

[13]  (a) A. Weickgenannt, M. Mewald, M. Oestreich, Org. Biomol. Chem. 2010, 8, 1497.
         | CrossRef | 1:CAS:528:DC%2BC3cXjtlamsL8%3D&md5=204281c825d176d2d09b3c0d00d7e363CAS | open url image1
      (b) R. J. P. Corriu, J. J. E. Moreau, J. Organomet. Chem. 1976, 120, 337.
         | CrossRef | open url image1

[14]  (a) K. Garcés, F. J. Fernandez-Alvarez, V. Polo, R. Lalrempuia, J. J. Perez-Torrente, L. A. Oro, ChemCatChem 2014, 6, 1691.
         | CrossRef | open url image1
      (b) L. D. Field, B. A. Messerle, M. Rehr, L. P. Soler, T. W. Hambley, Organometallics 2003, 22, 2387.
         | CrossRef | open url image1

[15]  (a) D. E. Barber, Z. Lu, T. Richardson, R. H. Crabtree, Inorg. Chem. 1992, 31, 4709.
         | CrossRef | 1:CAS:528:DyaK38XmtFamtbw%3D&md5=fd978aadf98cda26642aa18b01e04124CAS | open url image1
      (b) J. Ohshita, R. Taketsugu, Y. Nakahara, A. Kunai, J. Organomet. Chem. 2004, 689, 3258.
         | CrossRef | open url image1

[16]  (a) H. Ito, A. Watanabe, M. Sawamura, Org. Lett. 2005, 7, 1869.
         | CrossRef | 1:CAS:528:DC%2BD2MXivFGksbg%3D&md5=11cc72bffcea74a3ba33d0607bcc0e9bCAS | open url image1
      (b) S. Rendler, G. Auer, M. Oestreich, Angew. Chem., Int. Ed. 2005, 44, 7620.
         | CrossRef | open url image1

[17]  H. Ito, K. Takagi, T. Miyahara, M. Sawamura, Org. Lett. 2005, 7, 3001.
         | CrossRef | 1:CAS:528:DC%2BD2MXkvFSls7w%3D&md5=c9e3d02ac8b8fb9bc8ec83b5b5e59cc0CAS | open url image1

[18]  W. Caseri, P. S. Pregosin, Organometallics 1988, 7, 1373.
         | CrossRef | 1:CAS:528:DyaL1cXit1Wrur4%3D&md5=e9c708550e20438396d184f0ee5a66eeCAS | open url image1

[19]  (a) W. Sattler, G. Parkin, J. Am. Chem. Soc. 2012, 134, 17462.
         | CrossRef | 1:CAS:528:DC%2BC38XhsVOhsr7I&md5=f243069d031850851796d0205b0a77aeCAS | open url image1
      (b) D. Mukherjee, R. R. Thompson, A. Ellern, A. D. Sadow, ACS Catal. 2011, 1, 698.
         | CrossRef | open url image1

[20]  J. M. Blackwell, K. L. Foster, V. H. Beck, W. E. Piers, J. Org. Chem. 1999, 64, 4887.
         | CrossRef | 1:CAS:528:DyaK1MXjsFCqtLs%3D&md5=8de5678a51c45f7a5437b3feb1d89e01CAS | open url image1

[21]  D. Gao, C. Cui, Chem. – Eur. J. 2013, 19, 11143.
         | CrossRef | 1:CAS:528:DC%2BC3sXhtFShsr%2FO&md5=57ff91ebaca6e71e9861cf5fef5777b0CAS | open url image1

[22]  S. Anga, Y. Sarazin, J. F. Carpentier, T. K. Panda, ChemCatChem 2016, 8, 1373.
         | CrossRef | 1:CAS:528:DC%2BC28Xisl2ntLo%3D&md5=bb8b0daade7fc9fa742ba0a74dd6de74CAS | open url image1

[23]  A. Harinath, S. Anga, T. K. Panda, RSC Adv. 2016, 6, 35648.
         | CrossRef | 1:CAS:528:DC%2BC28XmslKntb8%3D&md5=620673ef8ead836dbf5c97ff522f33e8CAS | open url image1

[24]  Crystal data for N (CCDC No. 1500840): C25H22OSi, M 366.51, monoclinic, space group P21, a 6.8092(5) Å, b 11.6553(7) Å, c 12.6565(9) Å, α 90°, β 99.921(8)°, γ 90°, V 989.44(12) Å3, Dc 1.230 g cm–3, Z 2, T 150 K, λ 1.54184 Å, μ 1.119 mm–1, 2θmax 70.6236°, R1 0.067, wR2 0.18 (I > 2σ(I)), GOF 1.168.

[25]  B. Crousse, L. H. Xu, G. Bernardinelli, E. P. Kündig, Synlett 1998, 1998, 658.
         | CrossRef | open url image1

[26]  D. J. Liptrot, M. S. Hill, M. F. Mahon, A. S. S. Wilson, Angew. Chem., Int. Ed. 2015, 54, 13362.
         | CrossRef | 1:CAS:528:DC%2BC2MXhsV2nsrnO&md5=a5b8bf4a3f731a0bef7e9c9b8af8094bCAS | open url image1

[27]  (a) X. L. Zhang, H. Yamada, T. Saito, T. Kai, K. Murakami, M. Nakashima, J. Ohshita, K. Akamats, K. S. I. Nakao, J. Membr Sci. 2016, 499, 28.
         | CrossRef | 1:CAS:528:DC%2BC2MXhslKgs7bI&md5=1816e93dd5bfcdea6291810ceb4ed804CAS | open url image1
      (b) L. D. Field, B. A. Messerle, M. Rehr, L. P. Soler, T. W. Hambley, Organometallics 2003, 22, 2387.
         | CrossRef | open url image1
      (c) R. A. Corbin, E. A. Ison, M. M. Abu-Omar, Dalton Trans. 2009, 2850.
         | CrossRef | open url image1
      (d) J. M. S. Cardoso, R. Lopes, B. Royo, J. Organomet. Chem. 2015, 775, 173.
         | CrossRef | open url image1
      (e) W. Caseri, P. S. Pregosin, Organometallics 1988, 7, 1373.
         | CrossRef | open url image1
      (f) J. M. Blackwell, K. L. Foster, V. H. Beck, W. E. Piers, J. Org. Chem. 1999, 64, 4887.
         | CrossRef | open url image1
      (g) R. Filler, J. Org. Chem. 1954, 19, 544.
         | CrossRef | open url image1
      (h) T. Baba, Y. Kawanami, H. Yuasa, S. Yoshida, Catal. Lett. 2003, 91, 31.
         | CrossRef | open url image1
      (i) A. Purkayshtha, J. B. Baruah, J. Mol. Catal. Chem. 2003, 198, 47.
         | CrossRef | open url image1
      (j) C. Ghosh, T. K. Mukhopadhyay, M. Flores, T. L. Groy, R. J. Trovitch, Inorg. Chem. 2015, 54, 10398.
         | CrossRef | open url image1
      (k) S. Vijjamarri, V. K. Chidara, J. Rousova, G. Du, Catal. Sci. Technol. 2016, 6, 3886.
         | CrossRef | open url image1



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (1.5 MB) Export Citation