Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

1-(+)-Dehydroabietylimidazolium Salts as Enantiomer Discriminators for NMR Spectroscopy

H. Q. Nimal Gunaratne A , Tiina Laaksonen B , Kenneth R. Seddon A and Kristiina Wähälä B C D
+ Author Affiliations
- Author Affiliations

A QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast BT9 5AG, Northern Ireland, UK.

B Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, PO Box 55, FI-00014 University of Helsinki, Finland.

C Medicum, PO Box 21, FI-000140 University of Helsinki, Finland.

D Corresponding author. Email: kristiina.wahala@helsinki.fi

Australian Journal of Chemistry - https://doi.org/10.1071/CH16545
Submitted: 27 September 2016  Accepted: 3 February 2017   Published online: 8 March 2017

Abstract

Nine new (+)-dehydroabietylimidazolium salts were synthesised and studied as chiral solvating agents for several different racemic aromatic and non-aromatic carboxylate salts. These cationic chiral solvating agents resolve racemic ionic analytes better than non-ionic ones. Bis(dehydroabietylimidazolium) bis(trifluoromethanesulfonimide) gave the best discrimination for the enantiomers of carboxylate salts. Its resolution behaviour was studied by an NMR titration experiment, which indicated 1 : 1 complexation with the racemic analyte. The dehydroabietylimidazolium salts were also useful in enantiomeric excess (ee) determinations, and for the recognition of chirality of racemic aromatic and non-aromatic α-substituted carboxylic acids.


References

[1]  S. Witkowski, I. Wawer, in Stereoselective Synthesis of Drugs and Natural Products (Eds V. Andrushko, N. Andrushko) 2014, pp. 1483–1504 (John Wiley & Sons, Inc.: Hoboken, NJ).

[2]  H. Bergmann, B. Grosch, S. Sitterberg, T. Bach, J. Org. Chem. 2004, 69, 970.
         | CrossRef | 1:CAS:528:DC%2BD2cXksFCjuw%3D%3D&md5=70ca26f99bb5e477e895461c8d34c137CAS | open url image1

[3]  (a) K. S. Heo, M. H. Hyun, Y. J. Cho, J. J. Ryoo, Chirality 2011, 23, 281.
         | CrossRef | 1:CAS:528:DC%2BC3MXislOrsLY%3D&md5=394c56595fd426817a3d37967235da11CAS | open url image1
      (b) S. H. Grimm, L. Allmendinger, G. Hoefner, K. T. Wanner, Chirality 2013, 25, 923.
         | CrossRef | open url image1

[4]  G. Uccello-Barretta, F. Balzano, Top. Curr. Chem. 2013, 341, 69.
         | CrossRef | 1:CAS:528:DC%2BC2MXlvVWgsrk%3D&md5=94cfbfb9888cc00c75ce58548e06c61eCAS | open url image1

[5]  T. J. Wenzel, Discrimination of Chiral Compounds Using NMR Spectroscopy 2007 (John Wiley & Sons: Hoboken, NJ).

[6]  T. J. Wenzel, C. D. Chisholm, Chirality 2011, 23, 190.
         | CrossRef | 1:CAS:528:DC%2BC3MXhs1yksbk%3D&md5=daa381f38174893e37d7784dc5ece2daCAS | open url image1

[7]  (a) K. Tanaka, N. Fukuda, Tetrahedron Asymmetry 2009, 20, 111.
         | CrossRef | 1:CAS:528:DC%2BD1MXjtVSgsrg%3D&md5=2af899aa657a1721842b49dd0f2464ceCAS | open url image1
      (b) C. Pena, J. Gonzalez-Sabin, I. Alfonso, F. Rebolledo, V. Gotor, Tetrahedron 2008, 64, 7709.
         | CrossRef | open url image1
      (c) S. Bozkurt, M. Durmaz, H. N. Naziroglu, M. Yilmaz, A. Sirit, Tetrahedron Asymmetry 2011, 22, 541.
         | CrossRef | open url image1
      (d) W. Wang, F. Ma, X. Shen, C. Zhang, Tetrahedron Asymmetry 2007, 18, 832.
         | CrossRef | open url image1
      (e) W. Wang, X. Shen, F. Ma, Z. Li, C. Zhang, Tetrahedron Asymmetry 2008, 19, 1193.
         | CrossRef | open url image1
      (f) Z. Luo, C. Zhong, X. Wu, E. Fu, Tetrahedron Lett. 2008, 49, 3385.
         | CrossRef | open url image1

[8]  (a) V. Kumar, C. Pei, C. E. Olsen, S. J. C. Schaeffer, V. S. Parmar, S. V. Malhotra, Tetrahedron Asymmetry 2008, 19, 664.
         | CrossRef | 1:CAS:528:DC%2BD1cXktlOnur0%3D&md5=78ed75206cb6dd696fcfe4f470a967fcCAS | open url image1
      (b) V. Kumar, C. E. Olsen, S. J. C. Schaeffer, V. S. Parmar, S. V. Malhotra, Org. Lett. 2007, 9, 3905.
         | CrossRef | open url image1

[9]  (a) W. J. Gottstein, L. C. Cheney, J. Org. Chem. 1965, 30, 2072.
         | CrossRef | 1:CAS:528:DyaF2MXktlyqs7w%3D&md5=875326df662cdc79f1364b30b5d1d61eCAS | open url image1
      (b) C. Bolchi, L. Fumagalli, B. Moroni, M. Pallavicini, E. Valoti, Tetrahedron Asymmetry 2003, 14, 3779.
         | CrossRef | open url image1

[10]  (a) M. B. Foreiter, H. Q. N. Gunaratne, P. Nockemann, K. R. Seddon, P. J. Stevenson, D. F. Wassell, New J. Chem. 2013, 37, 515.
         | CrossRef | 1:CAS:528:DC%2BC3sXhtV2htro%3D&md5=bef6f03cacdbe4bbf6edf840a039dbdbCAS | open url image1
      (b) T. Laaksonen, S. Heikkinen, K. Wähälä, Org. Biomol. Chem. 2015, 13, 10548.
         | CrossRef | open url image1
      (c) T. Laaksonen, S. Heikkinen, K. Wähälä, Molecules 2015, 20, 20873.
         | CrossRef | open url image1

[11]  M. B. Foreiter, H. Q. N. Gunaratne, P. Nockemann, K. R. Seddon, G. Srinivasan, Phys. Chem. Chem. Phys. 2014, 16, 1208.
         | CrossRef | 1:CAS:528:DC%2BC3sXhvFSltb%2FE&md5=7d1ba6a14902ccb037f5fedb19998905CAS | open url image1

[12]  (a) B. Altava, D. S. Barbosa, M. Isabel Burguete, J. Escorihuela, S. V. Luis, Tetrahedron Asymmetry 2009, 20, 999.
         | CrossRef | 1:CAS:528:DC%2BD1MXmtVert7s%3D&md5=8f4e7205998a923b089fff1645345b48CAS | open url image1
      (b) V. Jurcik, R. Wilhelm, Tetrahedron Asymmetry 2006, 17, 801.
         | CrossRef | open url image1
      (c) V. Jurcik, M. Gilani, R. Wilhelm, Eur. J. Org. Chem. 2006, 5103.
         | CrossRef | open url image1
      (d) S. L. De Rooy, M. Li, D. K. Bwambok, B. El-Zahab, S. Challa, I. M. Warner, Chirality 2011, 23, 54.
         | CrossRef | open url image1
      (e) M. Bonanni, G. Soldaini, C. Faggi, A. Goti, F. Cardona, Synlett 2009, 747. open url image1
      (f) D. Drahonovsky, G. C. Labat, J. Sevcik, A. von Zelewsky, Heterocycles 2005, 65, 2169.
         | CrossRef | open url image1
      (g) M. Vasiloiu, I. Cervenka, P. Gaertner, M. Weil, K. Schröder-Bica, Tetrahedron Asymmetry 2015, 26, 1069.
         | CrossRef | open url image1

[13]  (a) S. Tabassum, M. A. Gilani, R. Wilhelm, Tetrahedron Asymmetry 2011, 22, 1632.
         | CrossRef | 1:CAS:528:DC%2BC3MXhsVOjtrzK&md5=cad2cd05247a60d972e6819395c171fbCAS | open url image1
      (b) L. Gonzalez, B. Altava, M. Bolte, M. I. Burguete, E. Garcia-Verdugo, S. V. Luis, Eur. J. Org. Chem. 2012, 4996.
         | CrossRef | open url image1

[14]  (a) T. Heckel, A. Winkel, R. Wilhelm, Tetrahedron Asymmetry 2013, 24, 1127.
         | CrossRef | 1:CAS:528:DC%2BC3sXhtlOrtLbI&md5=88063732545b22e0c86a1b058ea8e1a7CAS | open url image1
      (b) S. A. Ashraf, Y. Pornputtkul, L. A. P. Kane-Maguire, G. G. Wallace, Aust. J. Chem. 2007, 60, 64.
         | CrossRef | open url image1
      (c) S. Luo, D. Xu, H. Yue, L. Wang, W. Yang, Z. Xu, Tetrahedron Asymmetry 2006, 17, 2028.
         | CrossRef | open url image1

[15]  L. C. Cheney, U.S. patent 2787637 1957.

[16]  G. Su, L. Huo, W. Huang, H. Wang, Y. Pan, Chin. J. Struct. Chem. 2009, 28, 693.
         | 1:CAS:528:DC%2BD1MXosVCrtrg%3D&md5=87f50bb8d888c2f26299f4667e1a3d53CAS | open url image1

[17]  S. Stella, A. Chadha, Tetrahedron Asymmetry 2010, 21, 457.
         | CrossRef | 1:CAS:528:DC%2BC3cXltF2gur0%3D&md5=24b189b8476238136e8f2ecb0764388eCAS | open url image1

[18]  (a) B. Job, Ann. Chim. 1928, 9, 113.
         | 1:CAS:528:DyaB1cXhvVWgsQ%3D%3D&md5=d7430f9486480934d20c0135290c53e5CAS | open url image1
      (b) P. MacCarthy, Anal. Chem. 1978, 50, 2165.
         | CrossRef | open url image1
      (c) V. M. S. Gil, N. C. Oliveira, J. Chem. Educ. 1990, 67, 473.
         | CrossRef | open url image1

[19]  M. Perez-Trujillo, L. Castanar, E. Monteagudo, L. T. Kuhn, P. Nolis, A. Virgili, R. T. Williamson, T. Parella, Chem. Commun. 2014, 10214.
         | CrossRef | 1:CAS:528:DC%2BC2cXhtFOns77P&md5=d68a50740a4d81425f0ea0a706bd9021CAS | open url image1

[20]  J. A. Aguilar, S. Faulkner, M. Nilsson, G. A. Morris, Angew. Chem. Int. Ed. Engl. 2010, 49, 3901.
         | CrossRef | 1:CAS:528:DC%2BC3cXmsVOgtbc%3D&md5=4d2905047c78432615151d91fde35842CAS | open url image1

[21]  S. R. Chaudhari, N. Suryaprakash, Chem. Phys. Lett. 2013, 555, 286.
         | CrossRef | 1:CAS:528:DC%2BC38XhvVSku7fL&md5=ac05a059e13e51a35e5939eff404b392CAS | open url image1

[22]  S. R. Lokesh, N. Chaudhari, Suryaprakash, Org. Biomol. Chem. 2014, 12, 993.
         | CrossRef | 1:CAS:528:DC%2BC2cXnsFWhtw%3D%3D&md5=ed8a64ff46b665651e562f48335b5fc0CAS | open url image1

[23]  W. A. Anderson, R. Freeman, J. Chem. Phys. 1962, 37, 85.
         | CrossRef | 1:CAS:528:DyaF38Xkslemtrc%3D&md5=307f55947b13f3b3dfeb71c1a28669f0CAS | open url image1

[24]  J. P. Jesson, P. Meakin, G. Kneissel, J. Am. Chem. Soc. 1973, 95, 618.
         | CrossRef | 1:CAS:528:DyaE3sXnslOguw%3D%3D&md5=a125afc179fc8eda96cc2acf9298c3ddCAS | open url image1



Supplementary MaterialSupplementary Material (1.2 MB) Export Citation