Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthetic Models for Nickel–Iron Hydrogenase Featuring Redox-Active Ligands*

David Schilter A B C , Danielle L. Gray B , Amy L. Fuller B and Thomas B. Rauchfuss B
+ Author Affiliations
- Author Affiliations

A Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS),UNIST-gil 50, Ulsan 44919, Republic of Korea.

B Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave., Urbana, IL 61801, USA.

C Corresponding author. Email: d.schilter@gmail.com

Australian Journal of Chemistry 70(5) 505-515 https://doi.org/10.1071/CH16614
Submitted: 29 October 2016  Accepted: 15 November 2016   Published: 11 January 2017

Abstract

The nickel–iron hydrogenase enzymes efficiently and reversibly interconvert protons, electrons, and dihydrogen. These redox proteins feature iron–sulfur clusters that relay electrons to and from their active sites. Reported here are synthetic models for nickel–iron hydrogenase featuring redox-active auxiliaries that mimic the iron–sulfur cofactors. The complexes prepared are NiII(μ-H)FeIIFeII species of formula [(diphosphine)Ni(dithiolate)(μ-H)Fe(CO)2(ferrocenylphosphine)]+ or NiIIFeIFeII complexes [(diphosphine)Ni(dithiolate)Fe(CO)2(ferrocenylphosphine)]+ (diphosphine = Ph2P(CH2)2PPh2 or Cy2P(CH2)2PCy2; dithiolate = S(CH2)3S; ferrocenylphosphine = diphenylphosphinoferrocene, diphenylphosphinomethyl(nonamethylferrocene) or 1,1′-bis(diphenylphosphino)ferrocene). The hydride species is a catalyst for hydrogen evolution, while the latter hydride-free complexes can exist in four redox states – a feature made possible by the incorporation of the ferrocenyl groups. Mixed-valent complexes of 1,1′-bis(diphenylphosphino)ferrocene have one of the phosphine groups unbound, with these species representing advanced structural models with both a redox-active moiety (the ferrocene group) and a potential proton relay (the free phosphine) proximal to a nickel–iron dithiolate.


References

[1]  W. Lubitz, H. Ogata, O. Rüdiger, E. Reijerse, Chem. Rev. 2014, 114, 4081.
         | CrossRef | 1:CAS:528:DC%2BC2cXks1Sisrs%3D&md5=32e621caa83677493f4171a0bcb49d4aCAS |

[2]  Y. Higuchi, T. Yagi, N. Yasuoka, Structure 1997, 5, 1671.
         | CrossRef | 1:CAS:528:DyaK1cXmtVagtQ%3D%3D&md5=4455194828118ca36e8d4d02ab8a8d7bCAS |

[3]  A. Volbeda, M.-H. Charon, C. Piras, E. C. Hatchikian, M. Frey, J. C. Fontecilla-Camps, Nature 1995, 373, 580.
         | CrossRef | 1:CAS:528:DyaK2MXjsl2msLk%3D&md5=6f9a0a17e5b890c55e9a73f3d63f0b62CAS |

[4]  A. Volbeda, C. Darnault, A. Parkin, F. Sargent, F. A. Armstrong, J. C. Fontecilla-Camps, Structure 2013, 21, 184.
         | CrossRef | 1:CAS:528:DC%2BC38XhvVymu7jL&md5=59f743b0cedad46d60e234cf17c57e7bCAS |

[5]  A. Volbeda, L. Martin, C. Cavazza, M. Matho, B. W. Faber, W. Roseboom, S. P. J. Albracht, E. Garcin, M. Rousset, J. C. Fontecilla-Camps, J. Biol. Inorg. Chem. 2005, 10, 239.
         | CrossRef | 1:CAS:528:DC%2BD2MXktVOqsr8%3D&md5=6b58b9b957d897b565e3325e7a54d0adCAS |

[6]  D. Schilter, ChemBioChem 2015, 16, 1712.
         | CrossRef | 1:CAS:528:DC%2BC2MXhtVSgtbzF&md5=993ae5c6a4b60c344ff038e8a60300adCAS |

[7]  Y. Montet, P. Amara, A. Volbeda, X. Vernede, E. C. Hatchikian, M. J. Field, M. Frey, J. C. Fontecilla-Camps, Nat. Struct. Biol. 1997, 4, 523.
         | CrossRef | 1:CAS:528:DyaK2sXksVelurs%3D&md5=f13e4dbfc34091f6edc1587634a71f33CAS |

[8]  H. Ogata, K. Nishikawa, W. Lubitz, Nature 2015, 520, 571.
         | CrossRef |

[9]  R. M. Evans, E. J. Brooke, S. A. M. Wehlin, E. Nomerotskaia, F. Sargent, S. B. Carr, S. E. V. Phillips, F. A. Armstrong, Nat. Chem. Biol. 2015, 12, 46.
         | CrossRef |

[10]  H. Ogata, W. Lübitz, Y. Higuchi, Dalton Trans. 2009, 7577.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtFensL7M&md5=a764b7bb45935cea34b582a710ace2caCAS |

[11]  C. Fichtner, C. Laurich, E. Bothe, W. Lubitz, Biochemistry 2006, 45, 9706.
         | CrossRef | 1:CAS:528:DC%2BD28XntFKltb8%3D&md5=6c90f27957e774cacec74f9a09f8b5e3CAS |

[12]  B. L. Greene, C.-H. Wu, G. E. Vansuch, M. W. W. Adams, R. B. Dyer, Biochemistry 2016, 55, 1813.
         | CrossRef | 1:CAS:528:DC%2BC28XjslCmt7k%3D&md5=e363b700fb7f638f25d40485177471a7CAS |

[13]  M. Kampa, M.-E. Pandelia, W. Lubitz, M. van Gastel, F. Neese, J. Am. Chem. Soc. 2013, 135, 3915.
         | CrossRef | 1:CAS:528:DC%2BC3sXisVCrsbg%3D&md5=97c17b36f03fb48a5b580b9d2167c057CAS |

[14]  R. Hidalgo, P. A. Ash, A. J. Healy, K. A. Vincent, Angew. Chem. Int. Ed. 2015, 54, 7110.
         | CrossRef | 1:CAS:528:DC%2BC2MXnsFCmtb4%3D&md5=3bd423e8ee2578c3b61490d75ad386feCAS |

[15]  B. J. Murphy, R. Hidalgo, M. M. Roessler, R. M. Evans, P. A. Ash, W. K. Myers, K. A. Vincent, F. A. Armstrong, J. Am. Chem. Soc. 2015, 137, 8484.
         | CrossRef | 1:CAS:528:DC%2BC2MXhtVKitL%2FK&md5=b718638384c4a8fe8f7b64b586fc639bCAS |

[16]  H. Tai, K. Nishikawa, S. Inoue, Y. Higuchi, S. Hirota, J. Phys. Chem. B 2015, 119, 13668.
         | CrossRef | 1:CAS:528:DC%2BC2MXmvVyntbs%3D&md5=e1b906b773c3264ceb24e1cca838611dCAS |

[17]  B. L. Greene, C.-H. Wu, P. M. McTernan, M. W. W. Adams, R. B. Dyer, J. Am. Chem. Soc. 2015, 137, 4558.
         | CrossRef | 1:CAS:528:DC%2BC2MXksl2gsLo%3D&md5=3d0362a84aab99dac597600c7318a14eCAS |

[18]  J. C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 2007, 107, 4273.
         | CrossRef | 1:CAS:528:DC%2BD2sXhtVahs77P&md5=b4f2363f9a006f38f4cf56458825059eCAS |

[19]  A. K. Jones, E. Sillery, S. P. J. Albracht, F. A. Armstrong, Chem. Commun. 2002, 866.
         | CrossRef | 1:CAS:528:DC%2BD38XislSgt7o%3D&md5=9e3205348426754ece1d17f3a9cd3ac0CAS |

[20]  H. R. Pershad, J. L. C. Duff, H. A. Heering, E. C. Duin, S. P. J. Albracht, F. A. Armstrong, Biochemistry 1999, 38, 8992.
         | CrossRef | 1:CAS:528:DyaK1MXjvVyqsLk%3D&md5=23e2f00186a90b7621a8b1a3919ad7afCAS |

[21]  D. Schilter, J. M. Camara, M. T. Huynh, S. Hammes-Schiffer, T. B. Rauchfuss, Chem. Rev. 2016, 116, 8693.
         | CrossRef | 1:CAS:528:DC%2BC28XhtVGlt77N&md5=00aed97b3387d35deb07d0cda6072c8bCAS |

[22]  W. Zhu, A. C. Marr, Q. Wang, F. Neese, D. J. E. Spencer, A. J. Blake, P. A. Cooke, C. Wilson, M. Schröder, Proc. Natl. Acad. Sci. USA 2005, 102, 18280.
         | CrossRef | 1:CAS:528:DC%2BD28Xpt1ei&md5=3307eba64027eca761b45dbe3e2a37c8CAS |

[23]  G. M. Chambers, M. T. Huynh, Y. Li, S. Hammes-Schiffer, T. B. Rauchfuss, E. Reijerse, W. Lubitz, Inorg. Chem. 2016, 55, 419.
         | CrossRef | 1:CAS:528:DC%2BC28XlsVKjsw%3D%3D&md5=0e53235eee381d9e0d61e398f6f40f09CAS |

[24]  C. U. Perotto, G. Marshall, G. J. Jones, E. S. Davies, W. Lewis, J. McMaster, M. Schröder, Chem. Commun. 2015, 51, 16988.
         | CrossRef | 1:CAS:528:DC%2BC2MXhsF2htrfF&md5=e163a0a3854f3c7ad0a1f4a726f4d648CAS |

[25]  D. Schilter, M. J. Nilges, M. Chakrabarti, P. A. Lindahl, T. B. Rauchfuss, M. Stein, Inorg. Chem. 2012, 51, 2338.
         | CrossRef | 1:CAS:528:DC%2BC38Xhs1Onu7o%3D&md5=6c117c9806255c33064023ba1656b327CAS |

[26]  S. Ogo, K. Ichikawa, T. Kishima, T. Matsumoto, H. Nakai, K. Kusaka, T. Ohhara, Science 2013, 339, 682.
         | CrossRef | 1:CAS:528:DC%2BC3sXhvFOksbg%3D&md5=711bad54b57e4bedf8a3ae6b798e9ab9CAS |

[27]  B. C. Manor, T. B. Rauchfuss, J. Am. Chem. Soc. 2013, 135, 11895.
         | CrossRef | 1:CAS:528:DC%2BC3sXhtV2mtr%2FM&md5=8ad3f0ce242d53fe5cc232db89a5da86CAS |

[28]  B. E. Barton, T. B. Rauchfuss, J. Am. Chem. Soc. 2010, 132, 14877.
         | CrossRef | 1:CAS:528:DC%2BC3cXht1GqsbrI&md5=908f7693ffaa3615a4a8c4a6abd9644bCAS |

[29]  M. E. Carroll, B. E. Barton, D. L. Gray, A. E. Mack, T. B. Rauchfuss, Inorg. Chem. 2011, 50, 9554.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtVyls7vF&md5=7c699231ce719d0452f9406f978c799eCAS |

[30]  Y. Si, K. Charreteur, J.-F. Capon, F. Gloaguen, F. Y. Pétillon, P. Schollhammer, J. Talarmin, J. Inorg. Biochem. 2010, 104, 1038.
         | CrossRef | 1:CAS:528:DC%2BC3cXhtVaqurjN&md5=4001e4110e4accb21d5c51a7b7476907CAS |

[31]  D. Brazzolotto, M. Gennari, N. Queyriaux, T. R. Simmons, J. Pécaut, S. Demeshko, F. Meyer, M. Orio, V. Artero, C. Duboc, Nat. Chem. 2016, 8, 1054.
         | CrossRef | 1:CAS:528:DC%2BC28Xht1ygsrfP&md5=feda7a905d462073736754596ccb6e57CAS |

[32]  Y.-C. Liu, C.-H. Lee, G.-H. Lee, M.-H. Chiang, Eur. J. Inorg. Chem. 2011, 1155.
         | CrossRef |

[33]  S. Ghosh, G. Hogarth, N. Hollingsworth, K. B. Holt, S. E. Kabir, B. E. Sanchez, Chem. Commun. 2014, 50, 945.
         | CrossRef | 1:CAS:528:DC%2BC3sXhvFOnur7I&md5=7dcb29361bf319c5b19b96b8f5f0b11eCAS |

[34]  L.-C. Song, Q.-S. Li, Z.-Y. Yang, Y.-J. Hua, H.-Z. Bian, Q.-M. Hu, Eur. J. Inorg. Chem. 2010, 1119.
         | CrossRef | 1:CAS:528:DC%2BC3cXis1eiu7k%3D&md5=f66269e37528ea3a6ffab8a5e431210dCAS |

[35]  J. M. Camara, T. B. Rauchfuss, Nat. Chem. 2011, 4, 26.
         | CrossRef |

[36]  J. C. Lansing, J. M. Camara, D. L. Gray, T. B. Rauchfuss, Organometallics 2014, 33, 5897.
         | CrossRef | 1:CAS:528:DC%2BC2cXhtVOgtrnN&md5=41b268f34ffa0d56690b0df5d2e11b58CAS |

[37]  B. E. Barton, C. M. Whaley, T. B. Rauchfuss, D. L. Gray, J. Am. Chem. Soc. 2009, 131, 6942.
         | CrossRef | 1:CAS:528:DC%2BD1MXltlKltb4%3D&md5=18733a0c2ba73826d7d86939c4a4fae8CAS |

[38]  M. T. Huynh, D. Schilter, S. Hammes-Schiffer, T. B. Rauchfuss, J. Am. Chem. Soc. 2014, 136, 12385.
         | CrossRef | 1:CAS:528:DC%2BC2cXht1Kmtr%2FL&md5=bf5526d5a003893006d595647b7a272fCAS |

[39]  P. S. Braterman, Metal Carbonyl Spectra 1975 (Academic Press: New York, NY).

[40]  D. Schilter, T. B. Rauchfuss, M. Stein, Inorg. Chem. 2012, 51, 8931.
         | CrossRef | 1:CAS:528:DC%2BC38XhtFWhsrnM&md5=eab0f23e7740ce9aa91fb47f0a2ad611CAS |

[41]  A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, G. C. Verschoor, J. Chem. Soc., Dalton Trans. 1984, 1349.
         | CrossRef | 1:CAS:528:DyaL2cXmtVeitb8%3D&md5=3b734f99c0280ab7dfc3588a90c2f2daCAS |

[42]  S. Onaka, T. Moriya, S. Takagi, A. Mizuno, H. Foruta, Bull. Chem. Soc. Jpn. 1992, 65, 1415.
         | CrossRef | 1:CAS:528:DyaK38Xks12qu74%3D&md5=2add8266a2ed3c14263c2f5890ee1e1fCAS |

[43]  M. E. Carroll, J. Chen, D. E. Gray, J. C. Lansing, T. B. Rauchfuss, D. Schilter, P. I. Volkers, S. R. Wilson, Organometallics 2014, 33, 858.
         | CrossRef | 1:CAS:528:DC%2BC2cXhs1emtbk%3D&md5=8ed1a69a02e172645e92d6fecb62405fCAS |

[44]  O. A. Ulloa, M. T. Huynh, C. P. Richers, J. A. Bertke, M. J. Nilges, S. Hammes-Schiffer, T. B. Rauchfuss, J. Am. Chem. Soc. 2016, 138, 9234.
         | CrossRef | 1:CAS:528:DC%2BC28XhtVektr%2FN&md5=9f0b85e1db61720cfe9f1512dd6525d7CAS |

[45]  M. E. Pandelia, H. Ogata, J. J. Currell, M. Flores, W. Lubitz, Biochim. Biophys. Acta, Bioenerg. 2010, 1797, 304.
         | CrossRef | 1:CAS:528:DC%2BC3cXkt1GhsA%3D%3D&md5=169635ab00007907cdaaebf04b17442bCAS |

[46]  G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Adv. 2008, A64, 112.
         | CrossRef |

[47]  Bruker, SHELXTL v6.12 2005 (Bruker AXS, Inc.: Madison, WI).



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (940 KB) Export Citation Cited By (1)