Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Self-Assembled Co3O4 Nanoparticles with Porous Sea Urchin-Like Morphology and their Catalytic and Electrochemical Applications

Saba Jamil A B E , Muhammad Ramzan Saeed Ashraf Janjua C D E and Shanza Rauf Khan A
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.

B College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.

C Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

D Department of Chemistry, University of Sargodha, Sargodha-40100, Pakistan.

E Corresponding authors. Email: saba_hrb@yahoo.com; janjua@kfupm.edu.sa

Australian Journal of Chemistry - https://doi.org/10.1071/CH16694
Submitted: 6 December 2016  Accepted: 16 March 2017   Published online: 5 April 2017

Abstract

Novel self-assembled cobalt oxide nanoparticles with sea urchin-like morphology were synthesized using a solvothermal method. It was observed that the product consists of a tube-like arrangement of nanoparticles arising from a base. The base is formed by the arrangement of nanoparticles in the form of dense aggregates. A series of comparative experiments were performed over different time intervals to investigate the mechanism of formation of this morphology. The electrochemical performance of an electrode prepared based on this product was analysed by cyclic voltammetry, chronopotentiometry, and alternating current impedance. The electrochemical study shows that the prepared electrode possesses high capacitance and offers very low resistance against the flow of electrons. The product was used as a catalyst for the reduction of nitrobenzene in aqueous medium. The value of the apparent rate constant of catalysis was found to be as high as previously reported values.


References

[1]  G. Jin, S. Liu, Y. Li, Y. Guo, Z. Ding, Nano 2016, 11, 1650126.
         | CrossRef | 1:CAS:528:DC%2BC28XhslWjsbvN&md5=070db77b2377160cde2a9ea1d216a4b0CAS | open url image1

[2]  W. Zhang, L. Hu, F. Wu, J. Li, Catal. Lett. 2017, 147, 407.
         | CrossRef | 1:CAS:528:DC%2BC2sXovVymsg%3D%3D&md5=7004fff183b0a89f7581164780cbaec4CAS | open url image1

[3]  H. Tada, T. Ishida, A. Takao, S. Ito, S. Mukhopadhyay, T. Akita, ChemPhysChem 2005, 6, 1537.
         | CrossRef | 1:CAS:528:DC%2BD2MXps12ntLw%3D&md5=e78883ba2089363c76809364ae208d07CAS | open url image1

[4]  J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, D. Wang, Biosens. Bioelectron. 2013, 42, 198.
         | CrossRef | 1:CAS:528:DC%2BC3sXisVOgt70%3D&md5=c5e2778c2f5790ae41a0ef9543279e25CAS | open url image1

[5]  J. Y. Kim, N.-J. Choi, H. J. Park, J. Kim, D.-S. Lee, H. Song, J. Phys. Chem. C 2014, 118, 25994.
         | CrossRef | 1:CAS:528:DC%2BC2cXhslKkurbJ&md5=858bb7fdd7d6c5975a137fb390c90070CAS | open url image1

[6]  I. I. Suni, Trends Analyt. Chem. 2008, 27, 604.
         | CrossRef | 1:CAS:528:DC%2BD1cXptlKlu74%3D&md5=a1f0f3c65a88a86318f7db06145a568aCAS | open url image1

[7]  N. Sanpo, C. C. Berndt, C. Wen, J. Wang, Acta Biomater. 2013, 9, 5830.
         | CrossRef | 1:CAS:528:DC%2BC3sXhslChsLk%3D&md5=7a7e7a4e191fa0aedb2182ed48d7a68aCAS | open url image1

[8]  N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X. Hu, X. Kong, Q. Chen, J. Phys. Chem. C 2012, 116, 7227.
         | CrossRef | 1:CAS:528:DC%2BC38Xjt12lsbs%3D&md5=cabdbed6629cb9311446887c052767a9CAS | open url image1

[9]  X. C. Dong, H. Xu, X. W. Wang, Y.-X. Huang, M. B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, ACS Nano 2012, 6, 3206.
         | CrossRef | 1:CAS:528:DC%2BC38Xkt1ehs70%3D&md5=e27694b3dddc3398c874f96fb5c66f6cCAS | open url image1

[10]  M. D. Stoller, R. S. Ruoff, Energy Environ. Sci. 2010, 3, 1294.
         | CrossRef | 1:CAS:528:DC%2BC3cXht1yrsbnM&md5=0503a4a038ca3ec6e41a9056c6ce6e98CAS | open url image1

[11]  B. Wang, T. Zhu, H. B. Wu, R. Xu, J. S. Chen, X. W. D. Lou, Nanoscale 2012, 4, 2145.
         | CrossRef | 1:CAS:528:DC%2BC38XjtFyqsr4%3D&md5=cb20d4fc68a58c5e92b5f5ff2a18fcc4CAS | open url image1

[12]  Y. Lu, X. Liu, K. Qiu, J. Cheng, W. Wang, H. Yan, C. Tang, J.-K. Kim, Y. Luo, ACS Appl. Mater. Interfaces 2015, 7, 9682.
         | CrossRef | 1:CAS:528:DC%2BC2MXntVCgtLc%3D&md5=81372de46e63ded912ac9c9e42e83fbfCAS | open url image1

[13]  T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, C. C. Hu, Adv. Mater. 2010, 22, 347.
         | CrossRef | 1:CAS:528:DC%2BC3cXos1yjsw%3D%3D&md5=60c509b941b63b429df6ac85e795861cCAS | open url image1

[14]  W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, C. A. Ozkan, Sci. Rep. 2014, 4, 4452. open url image1

[15]  S. Guo, E. Wang, Anal. Chim. Acta 2007, 598, 181.
         | CrossRef | 1:CAS:528:DC%2BD2sXps1Gku7g%3D&md5=96e7204fce20c14d4b1a325d2838e4e3CAS | open url image1

[16]  W. Wei, X. Cui, W. Chen, D. G. Ivey, Chem. Soc. Rev. 2011, 40, 1697.
         | CrossRef | 1:CAS:528:DC%2BC3MXit1Kitrc%3D&md5=009cf54f5c908ef8a4c348c98518eeffCAS | open url image1

[17]  A. M. Cao, J. S. Hu, H. P. Liang, L. J. Wan, Angew. Chem. Int. Ed. 2005, 44, 4391.
         | CrossRef | 1:CAS:528:DC%2BD2MXmvVehs7Y%3D&md5=e77d226a5ba32bcf004b89fcfa11ecfaCAS | open url image1

[18]  T. Ahmad, K. V. Ramanujachary, S. E. Lofland, A. K. Ganguli, Solid State Sci. 2006, 8, 425.
         | CrossRef | 1:CAS:528:DC%2BD28Xjs1ahtLs%3D&md5=1bdcc5b721225e94edcaa4ee01bfce46CAS | open url image1

[19]  X. Wang, J. Song, L. Gao, J. Jin, H. Zheng, Z. Zhang, Nanotechnology 2005, 16, 37.
         | CrossRef | 1:CAS:528:DC%2BD2MXitVaks74%3D&md5=a609c6494ad37a749e6eff44c9932bc0CAS | open url image1

[20]  C. Yuan, X. Zhang, L. Su, B. Gao, L. Shen, J. Mater. Chem. 2009, 19, 5772.
         | CrossRef | 1:CAS:528:DC%2BD1MXpsValtbY%3D&md5=a7661e214fab22db32f12e63132ed88eCAS | open url image1

[21]  A. Salimi, R. Hallaj, S. Soltanian, H. Mamkhezri, Anal. Chim. Acta 2007, 594, 24.
         | CrossRef | 1:CAS:528:DC%2BD2sXmt1Kjtrg%3D&md5=85ff0add382ecdb2d6f4a8301884904cCAS | open url image1

[22]  M.-J. Deng, F.-L. Huang, I.-W. Sun, W.-T. Tsai, J.-K. Chang, Nanotechnology 2009, 20, 175602.
         | CrossRef | open url image1

[23]  Y. Fan, H. Shao, J. Wang, L. Liu, J. Zhang, C. Cao, Chem. Commun. 2011, 3469.
         | CrossRef | 1:CAS:528:DC%2BC3MXivVWls7o%3D&md5=4db7c329ef6df417d40b4b4b700932b9CAS | open url image1

[24]  Z.-Y. Li, P. T. M. Bui, D.-H. Kwak, M. S. Akhtar, O. B. Yang, Ceram. Int. 2016, 42, 1879.
         | CrossRef | 1:CAS:528:DC%2BC2MXhs1ehs7%2FO&md5=2a35974dfa88def3ed39f75b43d6ef74CAS | open url image1

[25]  X. Liu, Q. Long, C. Jiang, B. Zhan, C. Li, S. Liu, Q. Zhao, W. Huang, X. Dong, Nanoscale 2013, 5, 6525.
         | CrossRef | 1:CAS:528:DC%2BC3sXhtVWht7nF&md5=4956754ec59abeeea9353469f3be7877CAS | open url image1

[26]  Q. Guan, J. Cheng, B. Wang, W. Ni, G. Gu, X. Li, L. Huang, G. Yang, F. Nie, ACS Appl. Mater. Interfaces 2014, 6, 7626.
         | CrossRef | 1:CAS:528:DC%2BC2cXlsl2qs7o%3D&md5=25cff8c0c2991860c06e0e60297a6b12CAS | open url image1

[27]  F. Zhang, C. Yuan, J. Zhu, J. Wang, X. Zhang, X. W. D. Lou, Adv. Funct. Mater. 2013, 23, 3909.
         | CrossRef | 1:CAS:528:DC%2BC3sXksFeisLo%3D&md5=46d0c2918d596bdbce29fabec1bd4596CAS | open url image1

[28]  G. Wang, L. Zhang, J. Kim, J. Zhang, J. Power Sources 2012, 217, 554.
         | CrossRef | 1:CAS:528:DC%2BC38Xht1Wlt7rF&md5=c73ebd2d14570bd3e56fb23b666b26caCAS | open url image1

[29]  S. Jamil, M. R. S. A. Janjua, T. Ahmad, Solid State Sci. 2014, 36, 73.
         | CrossRef | 1:CAS:528:DC%2BC2cXhtlCksrzK&md5=7baff8a0baa8ed59fb22c09f840319b8CAS | open url image1

[30]  C. Yuan, L. Yang, L. Hou, J. Li, Y. Sun, X. Zhang, L. Shen, X. Lu, S. Xiong, X. W. Lou, Adv. Funct. Mater. 2012, 22, 2560.
         | CrossRef | 1:CAS:528:DC%2BC38XkvVGmsLc%3D&md5=1b3eb8a0ee014a9ee0d9a11fc96e2d87CAS | open url image1

[31]  L. Yang, S. Cheng, Y. Ding, X. Zhu, Z. L. Wang, M. Liu, Nano Lett. 2012, 12, 321.
         | CrossRef | 1:CAS:528:DC%2BC3MXhs1aqu7rI&md5=384dee6b1c03181985e8b81cc6e60c6bCAS | open url image1

[32]  N. Spataru, C. Terashima, K. Tokuhiro, I. Sutanto, D. A. Tryk, S.-M. Park, A. Fujishima, J. Electrochem. Soc. 2003, 150, E337.
         | CrossRef | 1:CAS:528:DC%2BD3sXksFymsrg%3D&md5=499a80874b8914688faccf0a73546d81CAS | open url image1

[33]  V. Gau, S.-C. Ma, H. Wang, J. Tsukuda, J. Kibler, D. A. Haake, Methods 2005, 37, 73.
         | CrossRef | 1:CAS:528:DC%2BD2MXhtFWntrjI&md5=7566f810e8d0ac2d4caf2d5b8e1eeafbCAS | open url image1

[34]  X. Wang, A. Sumboja, M. Lin, J. Yan, P. S. Lee, Nanoscale 2012, 4, 7266.
         | CrossRef | 1:CAS:528:DC%2BC38XhsF2kurfM&md5=46202fc1442456ceaabc258b8a465aa7CAS | open url image1

[35]  A. Inamdar, Y. S. Kim, J. S. Sohn, H. Im, H. Kim, D.-Y. Kim, S. R. Kalubarme, C. J. Park, J. Korean Phys. Soc. 2011, 59, 145.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtV2rtbfM&md5=cd7c4904d7e5d3e1c9ad29ca72801fbdCAS | open url image1

[36]  A. Sadkowski, J. P. Diard, Electrochim. Acta 2010, 55, 1907.
         | CrossRef | 1:CAS:528:DC%2BC3cXhs1Smsbw%3D&md5=a7b069a31705997702292734de7703a6CAS | open url image1

[37]  L. Ge, X.-y. Jing, J. Wang, S. Jamil, Q. Liu, D.-l. Song, J. Wang, Y. Xie, P.-p. Yang, M.-l. Zhang, Cryst. Growth Des. 2010, 10, 1688.
         | CrossRef | 1:CAS:528:DC%2BC3cXjtlajsb0%3D&md5=4982c541b3aa83066dbb8c41a753bc37CAS | open url image1

[38]  J. Xiao, S. Yang, RSC Adv. 2011, 1, 588.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtlWitrnI&md5=5c2cc7868e19fbf73bf5f0fba096450aCAS | open url image1

[39]  J. W. Larsen, M. Freund, K. Y. Kim, M. Sidovar, J. L. Stuart, Carbon 2000, 38, 655.
         | CrossRef | 1:CAS:528:DC%2BD3cXislKru7g%3D&md5=e83e0d5cfa2f06c8f847dbb7beee7b9eCAS | open url image1

[40]  D. M. Dotzauer, S. Bhattacharjee, Y. Wen, M. L. Bruening, Langmuir 2009, 25, 1865.
         | CrossRef | 1:CAS:528:DC%2BD1MXisVWrsw%3D%3D&md5=9c76858a2cec730162f4e43f5fed8c67CAS | open url image1

[41]  R. V. Jagadeesh, D. Banerjee, P. B. Arockiam, H. Junge, K. Junge, M.-M. Pohl, J. Radnik, A. Brückner, M. Beller, Green Chem. 2015, 17, 898.
         | CrossRef | 1:CAS:528:DC%2BC2cXhsFKqsrvJ&md5=64c3fa5cf743967dc04c368954337d2cCAS | open url image1

[42]  T. R. Mandlimath, B. Gopal, J. Mol. Catal. A: Chem. 2011, 350, 9.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtlKgtr3L&md5=1243d487a897dc05dbbe461913f3d23aCAS | open url image1

[43]  Z. H. Farooqi, S. R. Khan, R. Begum, T. Hussain, N. Batool, Walailak J. Sci. Technol. 2015, 12, 1147. open url image1

[44]  S. R. Khan, Z. H. Farooqi, A. Ali, R. Begum, F. Kanwal, M. Siddiq, Mater. Chem. Phys. 2016, 171, 318.
         | CrossRef | 1:CAS:528:DC%2BC28XnvV2rsg%3D%3D&md5=e9de26d4c5b169dcff0fc1f2974263f6CAS | open url image1

[45]  Z. H. Farooqi, Z. Butt, R. Begum, S. R. Khan, A. Sharif, E. Ahmed, Mater. Sci. Pol. 2015, 33, 627.
         | CrossRef | open url image1

[46]  F. A. Westerhaus, R. V. Jagadeesh, G. Wienhöfer, M.-M. Pohl, J. Radnik, A.-E. Surkus, J. Rabeah, K. Junge, H. Junge, M. Nielsen, A. Brückner, M. Beller, Nat. Chem. 2013, 5, 537.
         | CrossRef | 1:CAS:528:DC%2BC3sXnsVynsrg%3D&md5=6f42caec594aa8336b957e83bcd68f09CAS | open url image1



Supplementary MaterialSupplementary Material (125 KB) Export Citation