Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Synthesis of Imines and Amines from Furfurals Using Continuous Flow Processing

Boris Bizet A , Christian H. Hornung A B , Thomas M. Kohl A and John Tsanaktsidis A
+ Author Affiliations
- Author Affiliations

A CSIRO Manufacturing, Bag 10, Clayton South, Vic. 3169, Australia.

B Corresponding author. Email: christian.hornung@csiro.au

Australian Journal of Chemistry 70(10) 1069-1072 https://doi.org/10.1071/CH17036
Submitted: 16 January 2017  Accepted: 4 May 2017   Published: 30 May 2017

Abstract

A simple procedure for the condensation of the bio-derived furfurals, 5-(methyl)furfural (MF) and 5-(chloromethyl)furfural (CMF), with primary amines is described herein. The experiments were conducted in both batch and flow conditions, with reaction times as short as 60 s. Moderately high temperatures were demonstrated to be suitable for the condensation reaction of MF in a few minutes whereas milder conditions and longer reaction times were necessary for CMF. Under these conditions the amine did not react with the methyl-chlorine group, leaving a very reactive site after condensation.


References

[1]  B. Kamm, M. Kamm, M. Schmidt, T. Hirth, M. Schulze, in Biorefineries – Industrial Processes and Products: Status Quo and Future Directions (Eds B. Kamm, P. R. Gruber, M. Kamm) 2008, pp. 2–40 (John Wiley: Hoboken, NY).

[2]  S. Vaz, Chem. Biol. Technol. Agric. 2014, 1, 13.
         | CrossRef |

[3]  I. M. O’Hara, Z. Zhang, D. W. Rackemann, K. G. Dunn, P. A. Hobson, W. O. S. Doherty, in Proceedings of the 28th International Society of Sugar Cane Technologists Conference (Ed. D. M. Hogarth) 2013, pp. 1–16 (International Society of Sugar Cane Technologists: Quatre-Bornes, Mauritius).

[4]  D. Esposito, M. Antonietti, Chem. Soc. Rev. 2015, 44, 5821.
         | CrossRef | 1:CAS:528:DC%2BC2MXntFSqu7g%3D&md5=525cd13bf01b04c5f37085c661f80b07CAS |

[5]  L. M. Romeo, D. Catalina, P. Lisbona, Y. Lara, A. Martínez, Greenhouse Gas Sci. Technol. 2011, 1, 72.
         | CrossRef | 1:CAS:528:DC%2BC3MXlvFygs7c%3D&md5=60c437d1c97b8c8c00a9edbccf10bb70CAS |

[6]  P. Gallezot, Catal. Today 2007, 121, 76.
         | CrossRef | 1:CAS:528:DC%2BD2sXhvVygt74%3D&md5=0ad1b5d6514992b751b75684aeca5f5bCAS |

[7]  A. Behr, L. Johnen, ChemSusChem 2009, 2, 1072.
         | CrossRef | 1:CAS:528:DC%2BD1MXhsF2jtr%2FK&md5=b567f9c09a24db1dfbbfd168249d1be7CAS |

[8]  Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature 2007, 447, 982.
         | CrossRef |

[9]  T. J. Farmer, M. Mascal, in Introduction to Chemicals from Biomass, 2nd edn (Eds J. Clark, F. Deswarte) 2015, pp. 89–155 (John Wiley & Sons, Ltd: Chichester).

[10]  D. R. Lane, M. Mascal, P. Stroeve, Renew. Energy 2016, 85, 994.
         | CrossRef | 1:CAS:528:DC%2BC2MXht12ms7%2FE&md5=675fa68dc749da952572d5952cc687b6CAS |

[11]  M. Mascal, E. B. Nikitin, ChemSusChem 2009, 2, 859.
         | CrossRef | 1:CAS:528:DC%2BD1MXhtFGku7rK&md5=1a758bae7ab94520cf6dbd607a5338f3CAS |

[12]  M. Mascal, E. B. Nikitin, in Nanotechnology 2010: Bio Sensors, Instruments, Medical, Environment and Energy – Technical Proceedings of the 2010 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2010 2010, Vol. 3, pp. 646–649.

[13]  M. Mascal, E. B. Nikitin, ChemSusChem 2010, 3, 1349.
         | CrossRef | 1:CAS:528:DC%2BC3cXhsFCktrbN&md5=ca2f176e0a40c5a4a48008c6cbf0780eCAS |

[14]  M. Mascal, E. B. Nikitin, Energy Fuels 2010, 24, 2170.
         | CrossRef | 1:CAS:528:DC%2BC3cXhvVGqu7g%3D&md5=d531d7651ee9d52af15ef3d769183be6CAS |

[15]  I. T. Horváth, H. Mehdi, V. Fábos, L. Boda, L. T. Mika, Green Chem. 2008, 10, 238.
         | CrossRef |

[16]  D. Marosvölgyi-Haskó, B. Lengyel, J. M. Tukacs, L. Kollár, L. T. Mika, ChemPlusChem 2016, 81, 1224.
         | CrossRef |

[17]  T. Buntara, S. Noel, P. H. Phua, I. Melián-Cabrera, J. G. de Vries, H. J. Heeres, Top. Catal. 2012, 55, 612.
         | CrossRef | 1:CAS:528:DC%2BC38XpsV2rsr0%3D&md5=7cfb89343b6eff6d275bbb937adbf1c6CAS |

[18]  T. Werpy, G. Petersen, A. Aden, J. Bozell, J. Holladay, J. White, A. Manheim, D. Eliot, L. Lasure, S. Jones, Top value added chemicals from biomass. Volume 1 – Results of screening for potential candidates from sugars and synthesis gas. DTIC Document; 2004. Available at: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA436528 (cited 18 May 2017).

[19]  A. a. Rosatella, S. P. Simeonov, R. F. M. Frade, C. M. Afonso, Green Chem. 2011, 13, 754.
         | CrossRef | 1:CAS:528:DC%2BC3MXkt1Khsr4%3D&md5=a062b93e857b4fd3a83e488ce6940c71CAS |

[20]  M. Brasholz, K. von Känel, C. H. Hornung, S. Saubern, J. Tsanaktsidis, Green Chem. 2011, 13, 1114.
         | CrossRef | 1:CAS:528:DC%2BC3MXlsF2ntr4%3D&md5=79b6497ae2032cd63d71798c093d959fCAS |

[21]  A. Cukalovic, C. V. Stevens, Green Chem. 2010, 12, 1201.
         | CrossRef | 1:CAS:528:DC%2BC3cXotlyrtbc%3D&md5=0c09c4ae2065dc0fbf09d6b3dfc7f35fCAS |

[22]  C. Moreau, M. Naceur, A. Gandini, Top. Catal. 2004, 27, 11.
         | CrossRef | 1:CAS:528:DC%2BD2cXntlersw%3D%3D&md5=d1523e8ac58ce03dc8c548f77cbc4b47CAS |

[23]  H.-L. Dai, Q. Shen, J.-B. Zheng, J.-Y. Li, R. Wen, J. Li, Lett. Org. Chem. 2011, 8, 526.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtVWlt7vO&md5=f0a91dada1bd22aa3d6933cf4f1c725bCAS |

[24]  H. L. Dai, L.-X. Gao, Y. Yang, J.-Y. Li, J.-G. Cheng, J. Li, R. Wen, Y.-Q. Peng, J.-B. Zheng, Bioorg. Med. Chem. Lett. 2012, 22, 7440.
         | CrossRef | 1:CAS:528:DC%2BC38Xhs1SqurbO&md5=ca365774f5cd38fcb8c70136dfb4397eCAS |

[25]  T. K. Chakraborty, S. Tapadar, S. Kiran Kumar, Tetrahedron Lett. 2002, 43, 1317.
         | CrossRef | 1:CAS:528:DC%2BD38XpslGrtA%3D%3D&md5=e1c2a2dca323a32b8a6845b764258967CAS |

[26]  R. M. Myers, D. E. Fitzpatrick, R. M. Turner, S. V. Ley, Chem. – Eur. J. 2014, 20, 12348.
         | CrossRef | 1:CAS:528:DC%2BC2cXhsVWqsbnP&md5=21c6f392743dbad5dbf00903547342aaCAS |

[27]  K. S. Elvira, X. Casadevall i Solvas, R. C. R. Wootton, A. J. deMello, Nat. Chem. 2013, 5, 905.
         | CrossRef | 1:CAS:528:DC%2BC3sXhs1SrsbvL&md5=50dd44f38d2539a2ba21943e837deaccCAS |

[28]  S. V. Ley, D. E. Fitzpatrick, R. J. Ingham, R. M. Myers, Angew. Chem. 2015, 127, 3514.
         | CrossRef |

[29]  C. Wiles, P. Watts, Green Chem. 2012, 14, 38.
         | CrossRef | 1:CAS:528:DC%2BC38XivFWiuw%3D%3D&md5=80eec5a65deb6ed02112c1ddce119e8cCAS |

[30]  V. Hessel, D. Kralisch, N. Kockmann, T. Noël, Q. Wang, ChemSusChem 2013, 6, 746.
         | CrossRef | 1:CAS:528:DC%2BC3sXmtFSmt78%3D&md5=4865da2ede7df136410f76e1dd24bf62CAS |

[31]  P. Watts, C. Wiles, J. Chem. Res. 2012, 36, 181.
         | CrossRef | 1:CAS:528:DC%2BC38XnsVOiurs%3D&md5=b240e43536fd9109a2a4c75992c0266eCAS |

[32]  See pp. 1–14 in: W. Ehrfeld, V. Hessel, H. Löwe, Microreactors: New Technology for Modern Chemistry 2000 (Wiley-VCH Verlag GmbH: Weinheim).

[33]  N. Micic, A. Young, J. Rosselgong, C. H. Hornung, Processes 2014, 2, 58.
         | CrossRef | 1:CAS:528:DC%2BC2cXhtlWltLvP&md5=e4b9bb013db112beb8034117c2e8dc07CAS |

[34]  C. H. Hornung, C. Guerrero-Sanchez, M. Brasholz, S. Saubern, J. Chiefari, G. Moad, E. Rizzardo, S. H. Thang, Org. Process Res. Dev. 2011, 15, 593.
         | CrossRef | 1:CAS:528:DC%2BC3MXivFygs7w%3D&md5=997fbac2d414c4cf563205badb68cc8cCAS |

[35]  T. M. Kohl, C. H. Hornung, J. Tsanaktsidis, Molecules 2015, 20, 17860.
         | CrossRef | 1:CAS:528:DC%2BC2MXhs1Oit7bM&md5=6847b5feafe6e76cc62f814b5a7a47b7CAS |


Full Text PDF (297 KB) Export Citation

View Altmetrics