Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Tunable Electromagnetic Enhancement of Gold Nanoparticle Arrays

Hailiang Huang A , Guobin Yi A B , Xihong Zu A , Benbin Zhong A , Wenjing Lin A , Minghai Zhang A and Hongsheng Luo A
+ Author Affiliations
- Author Affiliations

A School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.

B Corresponding author. Email: ygb702@163.com

Australian Journal of Chemistry 70(8) 917-922 https://doi.org/10.1071/CH17056
Submitted: 3 February 2017  Accepted: 19 March 2017   Published: 18 April 2017

Abstract

In this paper, triblock copolymer polyisoprene-block-polystyrene-block-poly(2-vinylpyridine) (PI-b-PS-b-P2VP) micelles containing HAuCl4 were spin-coated on silicon wafers followed by calcination to form gold nanoparticle arrays. Subsequently the surface optical performances of poly(3-hexylthiophene) (P3HT)-coated Au nanoparticle arrays were investigated. The particle size and the interparticle distance of the gold nanoparticle arrays could be controlled by adjusting the molar ratio of HAuCl4 precursor to vinyl pyridine units in PI-b-PS-b-P2VP and the spin speed during spin-coating. The results demonstrated that Au nanoparticle arrays with large nanoparticle size were able to produce strong electromagnetic field enhancement. Furthermore, the ratio of average particle size to average interparticle distance increased with decreasing spin speed, resulting in strong electromagnetic field enhancement for metal-enhanced fluorescence (MEF) and surface-enhanced Raman scattering (SERS).


References

[1]  K. Watanabe, D. Menzel, N. Nilius, H. J. Freund, Chem. Rev. 2006, 106, 4301.
         | CrossRef | 1:CAS:528:DC%2BD28XptlOltb8%3D&md5=995ef9e8aa1861aba5afce7e575e95cdCAS |

[2]  Y. R. Fang, Y. Z. Li, H. X. Xu, M. T. Sun, Langmuir 2010, 26, 7737.
         | CrossRef | 1:CAS:528:DC%2BC3cXlslymtbo%3D&md5=ec9a01e1b826be08cffd3039ad841862CAS |

[3]  M. Hernandez, G. Recio, R. J. Martin-Palma, J. V. Garcia-Ramos, C. Domingo, P. Sevilla, Nanoscale Res. Lett. 2012, 7, 364.
         | CrossRef |

[4]  Y. Bu, S. Lee, ACS Appl. Mater. Interfaces 2012, 4, 3923.
         | CrossRef | 1:CAS:528:DC%2BC38XhtV2gsLrF&md5=8ac49ce787ade104d0d87730f68bec0dCAS |

[5]  H. Cang, A. Labno, C. G. Lu, X. B. Yin, M. Liu, C. Gladden, Y. M. Liu, X. Zhang, Nature 2011, 469, 385.
         | CrossRef | 1:CAS:528:DC%2BC3MXnvVKhug%3D%3D&md5=348378d035d9e9f65b01056d8eef0336CAS |

[6]  A. Sabur, M. Havel, Y. Gogotsi, J. Raman Spectrosc. 2008, 39, 61.
         | CrossRef | 1:CAS:528:DC%2BD1cXisFyntLo%3D&md5=34a19ff22d087bfc6ac586ca58ca017bCAS |

[7]  J. D. Flynn, B. L. Haas, J. S. Biteen, J. Phys. Chem. C 2016, 120, 20512.
         | CrossRef | 1:CAS:528:DC%2BC2MXhs1ChtrjJ&md5=a836c502b5e5f5daf7c02361a87175d4CAS |

[8]  C. D’Andrea, B. Fazio, P. G. Gucciardi, M. C. Giordano, C. Martella, D. Chiappe, A. Toma, F. Buatier de Mongeot, F. Tantussi, P. Vasanthakumar, F. Fuso, M. Allegrini, J. Phys. Chem. C 2014, 118, 8571.
         | CrossRef | 1:CAS:528:DC%2BC2cXltF2luro%3D&md5=3686e273a95ea29dbe50e78f579c408eCAS |

[9]  B. Abel, S. Coskun, M. Mohammed, R. Williams, H. E. Unalan, K. Aslan, J. Phys. Chem. C 2015, 119, 675.
         | CrossRef | 1:CAS:528:DC%2BC2cXitVKqs7nO&md5=c8556667e8b420e64233b0825cb81f9aCAS |

[10]  A. M. Gabudean, M. Focsan, S. Astilean, J. Phys. Chem. C 2012, 116, 12240.
         | CrossRef | 1:CAS:528:DC%2BC38XmvFGguro%3D&md5=c8b0aa1271b74a6aa47d5c86c729fc4aCAS |

[11]  M. H. Chowdhury, N. C. Lindquist, A. Lesuffleur, S. H. Oh, J. R. Lakowicz, K. Ray, J. Phys. Chem. C 2012, 116, 19958.
         | CrossRef | 1:CAS:528:DC%2BC38Xht1Gmsr%2FM&md5=c81fbb5a8dd927df927e4f74bf0efc34CAS |

[12]  P. P. Pompa, L. Martiradonna, A. D. Torre, F. D. Sala, L. Manna, M. D. Vittorio, F. Calabi, R. Cingolani, R. Rinaldi, Nat. Nanotechnol. 2006, 1, 126.
         | CrossRef | 1:CAS:528:DC%2BD28Xht1yjt7fI&md5=6ec438ef10009a83fc713a181e5f24f0CAS |

[13]  Z. C. Liu, T. X. Chang, H. Y. Huang, T. B. He, ACS Appl. Mater. Interfaces 2015, 7, 25938.
         | CrossRef | 1:CAS:528:DC%2BC2MXhslCjtbnI&md5=0400d183fa886bd52897b42537bad744CAS |

[14]  S. Fateixa, H. I. S. Nogueira, T. Trindade, Phys. Chem. Chem. Phys. 2015, 17, 21046.
         | CrossRef | 1:CAS:528:DC%2BC2MXmslGgt7s%3D&md5=6c33433fa0c356da0c67ad02ad3fb1ecCAS |

[15]  X. Y. Wang, S. L. Li, P. B. Zhang, F. T. Lv, L. B. Liu, L. D. Li, S. Wang, Adv. Mater. 2015, 27, 6040.
         | CrossRef | 1:CAS:528:DC%2BC2MXhsVSltbzL&md5=d4a55059bd3912634e8b12ee483819feCAS |

[16]  E. V. Canesi, M. Capsoni, L. Karnam, A. Lucotti, C. Bertarelli, M. D. Zoppo, J. Phys. Chem. C 2013, 117, 13197.
         | CrossRef | 1:CAS:528:DC%2BC3sXovFWmur4%3D&md5=68958adc2b668a2abcb9c9e7a7e7529aCAS |

[17]  Z. H. Cheng, G. Li, M. M. Liu, Sens. Actuators B 2015, 212, 495.
         | CrossRef | 1:CAS:528:DC%2BC2MXjtlCqsb8%3D&md5=9d17c1d0144fd77d58238dc9689180f0CAS |

[18]  L. Lu, Y. X. Qian, L. H. Wang, K. K. Ma, Y. D. Zhang, ACS Appl. Mater. Interfaces 2014, 6, 1944.
         | CrossRef | 1:CAS:528:DC%2BC2cXhsVOjtrk%3D&md5=36d43ad5e85f0e47307c95a1c240bd0dCAS |

[19]  Y. G. He, S. Y. Shi, N. Liu, Y. Y. Zhu, Y. S. Ding, J. Yin, Z. Q. Wu, RSC Adv. 2015, 5, 39697.
         | CrossRef | 1:CAS:528:DC%2BC2MXmvV2htL0%3D&md5=bda19b885c47c66ec6fe3f0a92fdc436CAS |

[20]  Q. H. Guo, M. M. Xu, Y. X. Yuan, R. A. Gu, J. L. Yao, Langmuir 2016, 32, 4530.
         | CrossRef | 1:CAS:528:DC%2BC28XmsVKktLc%3D&md5=38aa3408a785ac42f04e6bfaf991b746CAS |

[21]  H. Y. Guo, Z. Y. Zhang, B. S. Xing, A. Mukherjee, C. Musante, J. C. White, L. L. He, Environ. Sci. Technol. 2015, 49, 4317.
         | CrossRef | 1:CAS:528:DC%2BC2MXksVeiurw%3D&md5=f73d2329b7315e5991d1a258eec94c38CAS |

[22]  G. C. Zheng, L. Polavarapu, L. M. Liz-Marza’n, I. Pastoriza-Santosand, J. Pe’rez-Juste, Chem. Commun. 2015, 51, 4572.
         | CrossRef | 1:CAS:528:DC%2BC2cXitFegsrbM&md5=b5c71174f1765b4fbb61d9ba46788c8fCAS |

[23]  M. Auffan, J. Rose, M. R. Wiesner, J. Y. Bottero, Environ. Pollut. 2009, 157, 1127.
         | CrossRef | 1:CAS:528:DC%2BD1MXis1eltbk%3D&md5=de8052ab1c8a96fef27a683dcfd93b67CAS |

[24]  W. Hong, Y. Zhang, L. Gan, X. D. Chen, M. Q. Zhang, J. Mater. Chem. C 2015, 3, 6185.
         | CrossRef | 1:CAS:528:DC%2BC2MXotlaltbg%3D&md5=ee995ff25cc8ac2e5a2a70e63da88c22CAS |

[25]  K. Wong-ek, P. Eiamchai, M. Horprathum, V. Patthanasettakul, P. Limnonthakul, P. Chindaudom, N. Nuntawong, Thin Solid Films 2010, 518, 7128.
         | CrossRef | 1:CAS:528:DC%2BC3cXhtVOqur3K&md5=5c3df8d7e99eb83ee0a042b610a7a908CAS |

[26]  K. Leong, M. T. Zin, H. Ma, M. Sarikaya, F. Huang, A. K. Y. Jen, ACS Appl. Mater. Interfaces 2010, 2, 3153.
         | CrossRef | 1:CAS:528:DC%2BC3cXhsVSis7vF&md5=79a94d121359f1a6b68c7fa5f3d978d6CAS |

[27]  N. A. Abu Hatab, J. M. Oran, M. J. Sepaniak, ACS Nano 2008, 2, 377.
         | CrossRef | 1:CAS:528:DC%2BD1cXltlCksg%3D%3D&md5=f52a92030adfe490244783e02b0ed06eCAS |

[28]  Y. X. Zhang, A. Padhyay, J. E. Sevilleja, R. L. Guerrant, C. D. Geddes, J. Phys. Chem. C 2010, 114, 7575.
         | CrossRef | 1:CAS:528:DC%2BC3cXksF2lsr0%3D&md5=4720910c9e4ea3bd3c461dbeb9689990CAS |

[29]  Y. Hirai, H. Yabu, Y. Matsuo, K. Ijiro, M. Shimomura, Chem. Commun. 2010, 46, 2298.
         | CrossRef | 1:CAS:528:DC%2BC3cXjt1KhsLk%3D&md5=4fdde3be20b9db44c3f1916eb705ae31CAS |

[30]  L. Shang, H. J. Chen, S. J. Dong, J. Phys. Chem. C 2007, 111, 10780.
         | CrossRef | 1:CAS:528:DC%2BD2sXmvFejtr8%3D&md5=f83275641ab18f720d9b4118df76f57dCAS |

[31]  Y. C. Tsai, P. C. Hsu, Y. W. Lin, T. M. Wu, Electrochem. Commun. 2009, 11, 542.
         | CrossRef | 1:CAS:528:DC%2BD1MXisFSgtL0%3D&md5=2c64c5b8ed23a39cb9959e3051b0c598CAS |

[32]  B. B. Zhong, X. H. Zu, G. B. Yi, H. L. Huang, M. H. Zhang, H. S. Luo, J. Nanopart. Res. 2016, 18, 281.
         | CrossRef |

[33]  I. Lombardi, P. L. Cavallotti, C. Carraro, R. Maboudian, Sens. Actuators B 2007, 125, 353.
         | CrossRef | 1:CAS:528:DC%2BD2sXot12mt7o%3D&md5=47920200ec9d0ad5506f4994df40dc8eCAS |

[34]  D. A. Genov, A. K. Sarychev, V. M. Shalaev, A. Wei, Nano Lett. 2004, 4, 153.
         | CrossRef | 1:CAS:528:DC%2BD3sXpsFOksbo%3D&md5=41bf5eab8e7c032c2d182aa26d528dccCAS |

[35]  T. D. Corrigan, S. Guo, R. J. Phaneuf, H. Szmacinski, J. Fluoresc. 2005, 15, 777.
         | CrossRef | 1:CAS:528:DC%2BD2MXht12lsbfK&md5=21b1980fb1b36368a856c1c3e57a40f3CAS |

[36]  C. Mu, J. P. Zhang, D. S. Xu, Nanotechnology 2010, 21, 015604.
         | CrossRef |

[37]  B. Yan, A. Thubagere, W. R. Premasiri, L. D. Ziegler, L. D. Negro, B. M. Reinhard, ACS Nano 2009, 3, 1190.
         | CrossRef | 1:CAS:528:DC%2BD1MXktF2hurw%3D&md5=3eeb6e06fc1e279f2794dd784b8e4d74CAS |

[38]  D. E. Motaung, G. F. Malgas, C. J. Arendse, S. E. Mavundla, D. Knoesen, Mater. Chem. Phys. 2009, 116, 279.
         | CrossRef | 1:CAS:528:DC%2BD1MXlvFGksro%3D&md5=286874a5afc0b5c367233c0817733bb3CAS |

[39]  X. H. Zu, Z. H. Jian, G. B. Yi, H. L. Huang, B. B. Zhong, H. S. Luo, J. R. Huang, C. Wang, Chin. J. Polym. Sci. 2015, 33, 1470.
         | CrossRef | 1:CAS:528:DC%2BC2MXhtlKltLnF&md5=78fd9dd13f465909bb3283a542258e0dCAS |

[40]  X. N. Wang, Y. Y. Wang, M. Cong, H. B. Li, Y. J. Gu, J. R. Lombardi, S. P. Xu, W. Q. Xu, Small 2013, 9, 1895.
         | CrossRef | 1:CAS:528:DC%2BC38XhvVChtbvE&md5=ded18ff0cf68c006487f12f651b34acbCAS |

[41]  L. H. Qian, R. Mookherjee, Nano Res. 2011, 4, 1117.
         | CrossRef | 1:CAS:528:DC%2BC3MXhsVGnsbbJ&md5=4909bfa38ed8188ffc4f73bb625f1dc2CAS |



Rent Article (via Deepdyve) Export Citation