Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

An Injectable Oxidized Carboxymethyl Cellulose/Polyacryloyl Hydrazide Hydrogel via Schiff Base Reaction

Xueying Sheng A , Xian Li A , Mengting Li A , Renyi Zhang A , Shuang Deng A , Wangkai Yang A , Guanjun Chang A and Xu Ye A B
+ Author Affiliations
- Author Affiliations

A School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.

B Corresponding author. Email: yexu@swust.edu.cn

Australian Journal of Chemistry - https://doi.org/10.1071/CH17214
Submitted: 20 April 2017  Accepted: 8 September 2017   Published online: 10 October 2017

Abstract

A series of injectable hydrogels was prepared by cross-linking oxidized carboxymethyl cellulose (oxi-CMC) with polyacryloyl hydrazide (PAH) via a Schiff base reaction under physiological conditions. The hydrogels exhibited superior performance such as appropriate rheology properties, high swelling ratio, and low degradation rate. In phosphate buffer solution (PBS, pH 7.4) at 37°C, the swelling ratio of the hydrogels ranged from 19 to 28 after 7 h, the degradation percentage of the oxi-CMC6/PAH3 hydrogel was ~47 % after 20 days. Using bovine serum albumin (BSA) as a model protein drug, the results of in vitro drug release studies demonstrated that the sustained release of BSA could be cooperatively controlled through drug diffusion and hydrogel degradation in PBS (pH 7.4) at 37°C, and the cumulative release percentage of BSA from a drug-loaded oxi-CMC6/PAH3 hydrogel was ~88 % after 8 days. The results signified that oxi-CMC6/PAH3 hydrogel could be potentially applied in the fields of drug delivery vehicles, tissue engineering, and cell encapsulation materials.


References

[1]  W. A. Laftah, S. Hashim, A. N. Ibrahim, Polym.-Plast. Technol. Eng. 2011, 50, 1475.
         | CrossRef | 1:CAS:528:DC%2BC3MXht1Gnu7zL&md5=8b8f5d69d67329f665ff94d3ccf036baCAS |

[2]  M. J. Zohuriaan-Mehr, H. Omidian, S. Doroudiani, K. Kabiri, J. Mater. Sci. 2010, 45, 5711.
         | CrossRef | 1:CAS:528:DC%2BC3cXps1Ghsb8%3D&md5=4bc32d31ca55e2fc1c78797fc933abd4CAS |

[3]  M. Malmsten, Soft Matter 2011, 7, 8725.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtFyqu7jF&md5=a81987befb2fd0eeb9d474bbacea649dCAS |

[4]  S. Van Vlierberghe, P. Dubruel, E. Schacht, Biomacromolecules 2011, 12, 1387.
         | CrossRef | 1:CAS:528:DC%2BC3MXjvF2qs7s%3D&md5=8fe54fb30ab6c895a2eb078e38ed3bf7CAS |

[5]  A. Richter, G. Paschew, S. Klatt, J. Lienig, K.-F. Arndt, H.-J. P. Adler, Sensors 2008, 8, 561.
         | CrossRef | 1:CAS:528:DC%2BD1cXksFensr8%3D&md5=515a50412918c2247b952a9e4240cde4CAS |

[6]  Y. J. Jiang, J. Chen, C. Deng, E. J. Suuronen, Z. Zhong, Biomaterials 2014, 35, 4969.
         | CrossRef | 1:CAS:528:DC%2BC2cXkvVGks74%3D&md5=5fbb755c51d4de88a6c22f1af5a3b572CAS |

[7]  M. S. Bae, N. R. Ko, S. J. Lee, J. B. Lee, D. N. Heo, W. Byun, B. J. Choi, H. B. Jeon, H. J. Jang, J. Y. Ahn, D. S. Hwang, B. Y. Jung, I. K. Kwon, Macromol. Res. 2016, 24, 829.
         | CrossRef | 1:CAS:528:DC%2BC28XhtlKrtLnP&md5=b608fb6f5113be9df7ebc2dc5931099aCAS |

[8]  Y. Liu, L. J. Duan, M. J. Kim, J. H. Kim, D. J. Chung, Macromol. Res. 2014, 22, 240.
         | CrossRef | 1:CAS:528:DC%2BC3sXhs1agu7%2FE&md5=3a6822590e0347a9c7925abc0604373bCAS |

[9]  J. Z. Ma, X. L. Li, Y. Bao, RSC Adv. 2015, 5, 59745.
         | CrossRef | 1:CAS:528:DC%2BC2MXhtV2ltbvP&md5=51d1642c6d4358fb7f8d381caaf50d13CAS |

[10]  P. Chitprasert, P. Sutaphanit, J. Agric. Food Chem. 2014, 62, 12641.
         | CrossRef | 1:CAS:528:DC%2BC2cXhvVyrtbzI&md5=4a084700333fdd3938d6ecd149cb4105CAS |

[11]  Y. M. Shlyapnikov, E. A. Shlyapnikova, V. N. Morozov, Anal. Chem. 2014, 86, 2082.
         | CrossRef | 1:CAS:528:DC%2BC2cXpslGhsQ%3D%3D&md5=2bf1e017ece49af006ce43e1889a515cCAS |

[12]  T. Perko, E. Markočič, Z. Knez, M. Škerget, J. Chem. Eng. Data 2011, 56, 4040.
         | CrossRef | 1:CAS:528:DC%2BC3MXht1OrsbrE&md5=81bd5451dfce78319d9ed2bce42a755dCAS |

[13]  T. Siritientong, P. Aramwit, Macromol. Res. 2015, 23, 861.
         | CrossRef | 1:CAS:528:DC%2BC2MXhtlSmu7fP&md5=f5e934bea0fac1b47d0837c04d567cdcCAS |

[14]  L. Li, N. Wang, X. Jin, R. Deng, S. H. Nei, L. Sun, Q. J. Wu, Y. Q. Wei, C. Y. Gong, Biomaterials 2014, 35, 3903.
         | CrossRef | 1:CAS:528:DC%2BC2cXhsl2hs7o%3D&md5=4306387ac6b24dcff678a221df0c44e5CAS |

[15]  C. H. Wang, W. S. Liu, J. F. Sun, G. G. Hou, Q. Chen, W. Cong, F. Zhao, Int. J. Biol. Macromol. 2016, 84, 418.
         | CrossRef | 1:CAS:528:DC%2BC2MXitV2rsL3O&md5=b59d54e57d61a903660ecc3cd48e7533CAS |

[16]  L. H. Weng, X. M. Chen, W. Chen, Biomacromolecules 2007, 8, 1109.
         | CrossRef | 1:CAS:528:DC%2BD2sXislKktLY%3D&md5=1faf0c3511108c9c871fb387798a4238CAS |

[17]  S. F. Yan, T. T. Wang, L. Feng, J. Zhu, K. X. Zhang, X. S. Chen, L. Cui, J. B. Yin, Biomacromolecules 2014, 15, 4495.
         | CrossRef | 1:CAS:528:DC%2BC2cXhs1OitLbO&md5=71aff31cc16754e6798f2b46bf6f7026CAS |

[18]  E. Bordallo, J. Rieumont, M. J. Tiera, M. Gómez, M. Lazzari, Carbohydr. Polym. 2015, 124, 43.
         | CrossRef | 1:CAS:528:DC%2BC2MXjtVSrsb4%3D&md5=ae6b766907d2d5e061c98ded7062a44bCAS |

[19]  H. Itoh, T. Suzuta, T. Hoshino, N. Takaya, J. Biol. Chem. 2008, 283, 5790.
         | CrossRef | 1:CAS:528:DC%2BD1cXit1Omtbk%3D&md5=4390d8c7c9ca1360520d4088f5b99fe8CAS |

[20]  G. Schaeffer, E. Buhler, S. J. Candau, J. M. Lehn, Macromolecules 2013, 46, 5664.
         | CrossRef | 1:CAS:528:DC%2BC3sXhtValsL3M&md5=1f56a1eb76e0e9a029c0c81e0e5499e2CAS |

[21]  T. Ganguly, B. B. Kasten, D. K. Bučar, L. R. MacGillivray, C. E. Berkman, P. D. Benny, Chem. Commun. 2011, 47, 12846.
         | CrossRef | 1:CAS:528:DC%2BC3MXhsFamsLvO&md5=5cfd4959164a0d76e3c129e9699061cbCAS |

[22]  A. Kumar, R. R. Ujjwal, A. Mittal, A. Bansal, U. Ojha, ACS Appl. Mater. Inter. 2014, 6, 1855.
         | CrossRef | 1:CAS:528:DC%2BC2cXktlGjsg%3D%3D&md5=67cfdb8af8178190736c7543ad3a4dd0CAS |

[23]  K. Godula, C. R. Bertozzi, J. Am. Chem. Soc. 2010, 132, 9963.
         | CrossRef | 1:CAS:528:DC%2BC3cXosVGhsL0%3D&md5=3d0c18c50b82247add0d9205a9f6dbd9CAS |

[24]  Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro, K. Kataoka, Bioconjug. Chem. 2005, 16, 122.
         | CrossRef | 1:CAS:528:DC%2BD2cXhtFSlur3K&md5=8a2f9641c591f2ddd465a6a5123699d2CAS |

[25]  Y. Bae, S. Fukushima, A. Harada, K. Kataoka, Angew. Chem. Int. Ed. 2003, 42, 4640.
         | CrossRef | 1:CAS:528:DC%2BD3sXot12ltb0%3D&md5=3c087a5b81269de9a0e6ace1d29f476fCAS |

[26]  Y. Q. Shen, X. Li, Y. W. Huang, G. J. Chang, K. Cao, J. X. Yang, R. Y. Zhang, X. Y. Sheng, X. Ye, Macromol. Res. 2016, 24, 602.
         | CrossRef | 1:CAS:528:DC%2BC28XhtFWhtrbF&md5=d8860a5a96f849d4de1403dcf2a290bdCAS |

[27]  H. Bae, L. S. Wang, M. Kurisawa, J. Mater. Chem. B 2013, 1, 5371.
         | CrossRef | 1:CAS:528:DC%2BC3sXhsFWnsbfF&md5=4e60e807f436ab56f58b155486a19614CAS |

[28]  S. Badran, A. A. Abd-El-Hakim, A. B. Moustafa, M. A. Abd El-Ghaffar, J. Polym. Sci. Part A: Polym. Chem. 1988, 26, 609.
         | CrossRef | 1:CAS:528:DyaL1cXit1aitL0%3D&md5=4b661264785604459bde3e20dfc948e2CAS |

[29]  R. R. Vil’danova, N. N. Sigaeva, O. S. Kukovinets, V. P. Volodina, L. V. Spirikhin, I. S. Zaidullin, S. V. Kolesov, Russ. J. Appl. Chem. 2014, 87, 1547.
         | CrossRef | 1:CAS:528:DC%2BC2MXhsFWqsL4%3D&md5=04eff4af927ae475b2c577c557e63835CAS |

[30]  M. M. Bradford, Anal. Biochem. 1976, 72, 248.
         | CrossRef | 1:CAS:528:DyaE28XksVehtrY%3D&md5=5590c95e89d2b039ae6405686bfa0e67CAS |



Supplementary MaterialSupplementary Material (243 KB) Export Citation