Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Internal Energy Deposition in Dielectric Barrier Discharge Ionization is Significantly Lower than in Direct Analysis in Real-Time Mass Spectrometry*

Morphy Dumlao A , George N. Khairallah B C and W. Alexander Donald A D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.

B School of Chemistry, University of Melbourne, Melbourne, Vic. 3010, Australia.

C Accurate Mass Scientific, Keilor, Vic. 3036, Australia.

D Corresponding author. Email: w.donald@unsw.edu.au

Australian Journal of Chemistry 70(11) 1219-1226 https://doi.org/10.1071/CH17440
Submitted: 31 July 2017  Accepted: 25 August 2017   Published: 12 September 2017

Abstract

The extent of internal energy deposition using three different plasma-based ionization mass spectrometry (MS) methods, atmospheric pressure chemical ionization (APCI), direct analysis in real time (DART), and active capillary dielectric barrier discharge ionization (DBDI), was investigated using benzylammonium ‘thermometer’ ions. Ions formed by DBDI were activated significantly less than those that were formed by DART and APCI under these conditions. Thermal ion activation by DART can be reduced slightly by positioning the DART source further from the capillary entrance to the MS and reducing the heat that is applied to metastable atoms exiting the DART source. For example, the average ion internal energy distribution decreased by less than 10 % (166.9 ± 0.3 to 152.2 ± 1.0 kJ mol−1) when the distance between the DART source and the MS was increased by 250 % (10 to 25 mm). By lowering the DART temperature from 350 to 150°C, the internal energy distributions of the thermometer ions decreased by ~15 % (169.93 ± 0.83 to 150.21 ± 0.52 kJ mol−1). Positioning the DART source nozzle more than 25 mm from the entrance to the MS and decreasing the DART temperature further resulted in a significant decrease in ion signal. Thus, varying the major DART ion source parameters had minimal impact on the ‘softness’ of the DART ion source under these conditions. Overall, these data indicate that DBDI can be a significantly ‘softer’ ion source than two of the most widely used plasma-based ion sources that are commercially available.


References

[1]  R. Javanshad, A. R. Venter, Anal. Methods 2017,
         | CrossRef |

[2]  P. Pruski, D. A. MacIntyre, H. V. Lewis, P. Inglese, G. D. S. Correia, T. T. Hansel, P. R. Bennett, E. Holmes, Z. Takats, Anal. Chem. 2017, 89, 1540.
         | CrossRef | 1:CAS:528:DC%2BC28XitFGgt7rI&md5=eda861e9c2587f40b8f0dc731ac9a2a6CAS |

[3]  A. K. Jarmusch, C. M. Alfaro, V. Pirro, E. M. Hattab, A. A. Cohen-Gadol, R. G. Cooks, PLoS One 2016, 11, e0163180.
         | CrossRef |

[4]  F. A. M. G. van Geenen, M. C. R. Franssen, A. H. M. Schotman, H. Zuilhof, M. W. F. Nielen, Anal. Chem. 2017, 89, 4031.
         | CrossRef | 1:CAS:528:DC%2BC2sXjs1Kgs7s%3D&md5=26ce8a7f4a2db6a1335a41443379d868CAS |

[5]  M. T. Bokhart, D. C. Muddiman, Analyst 2016, 141, 5236.
         | CrossRef | 1:CAS:528:DC%2BC28XhtFymsLbF&md5=e493a2c6874bc9b7ef5e934b274c90cdCAS |

[6]  S.-C. Cheng, C. Shiea, Y.-L. Huang, C.-H. Wang, Y.-T. Cho, J. Shiea, Anal. Methods 2017,
         | CrossRef |

[7]  J. Chen, F. Tang, C. Guo, S. Zhang, X. Zhang, Anal. Methods 2017,
         | CrossRef |

[8]  J. Srbek, B. Klejdus, M. Douša, J. Břicháč, P. Stasiak, J. Reitmajer, L. Nováková, Talanta 2014, 130, 518.
         | CrossRef | 1:CAS:528:DC%2BC2MXhsVejur0%3D&md5=e4ef3e1d6c23e2d33f7f0c771d3cab87CAS |

[9]  M. J. Pavlovich, B. Musselman, A. B. Hall, Mass Spectrom. Rev. 2016, 9999, 1.

[10]  J. A. R. Teodoro, H. V. Pereira, D. N. Correia, M. M. Sena, E. Piccin, R. Augusti, Anal. Methods 2017,

[11]  A. M. Bruno, S. R. Cleary, A. E. O’Leary, M. C. Gizzi, C. C. Mulligan, Anal. Methods 2017,

[12]  M. C. Bridoux, A. Schwarzenberg, S. Schramm, R. B. Cole, Anal. Bioanal. Chem. 2016, 408, 5677.
         | CrossRef | 1:CAS:528:DC%2BC28XhtVWlurnL&md5=667b36c05a55ac3ddb93810e04011a9fCAS |

[13]  T. P. Forbes, E. Sisco, M. Staymates, G. Gillen, Anal. Methods 2017,
         | CrossRef |

[14]  H. Brown, B. Oktem, A. Windom, V. Doroshenko, K. Evans-Nguyen, Forensic Chem. 2016, 1, 66.
         | CrossRef |

[15]  M. Dumlao, P. M.-L. Sinues, M. Nudnova, R. Zenobi, Anal. Methods 2014, 6, 3604.
         | CrossRef | 1:CAS:528:DC%2BC2cXotFOhsbY%3D&md5=c742a4539190da2afe63f4f814c57d4fCAS |

[16]  P. A. D’Agostino, C. L. Chenier, Rapid Commun. Mass Spectrom. 2010, 24, 1617.
         | CrossRef | 1:CAS:528:DC%2BC3cXmt12mtbc%3D&md5=639cc39ec4d5f9b1e9c881d4ae827277CAS |

[17]  M. C. Dumlao, L. E. Jeffress, J. J. Gooding, W. A. Donald, Analyst 2016, 141, 3714.
         | CrossRef | 1:CAS:528:DC%2BC28XktV2ltL4%3D&md5=cbf1a75795d330ea84597f47dcd53988CAS |

[18]  S. Li, X. Wang, L. Liu, Y. Guo, Q. Mu, A. Mellouki, Environ. Sci. Pollut. Res. Int. 2017, 24, 15794.
         | CrossRef | 1:CAS:528:DC%2BC2sXptFeksb0%3D&md5=8276f93387e4461a2620f26f13caef21CAS |

[19]  A. Schütz, S. Brandt, S. Liedtke, D. Foest, U. Marggraf, J. Franzke, Anal. Chem. 2015, 87, 11415.
         | CrossRef |

[20]  M. C. Dumlao, D. Xiao, D. Zhang, J. Fletcher, W. A. Donald, J. Am. Soc. Mass Spectrom. 2017, 28, 575.
         | CrossRef | 1:CAS:528:DC%2BC28XhvVagsLnF&md5=cc482949f1cb05267e8bc29883f14eedCAS |

[21]  J. I. Zhang, N. Talaty, A. B. Costa, Y. Xia, W. A. Tao, R. Bell, J. H. Callahan, R. G. Cooks, Int. J. Mass Spectrom. 2011, 301, 37.
         | CrossRef | 1:CAS:528:DC%2BC3MXjvVKktLw%3D&md5=928db3a36632421fb089ed2aca68a27bCAS |

[22]  J. Gross, Anal. Bioanal. Chem. 2014, 406, 63.
         | CrossRef | 1:CAS:528:DC%2BC3sXhsVCis7jP&md5=db1bce8a2a6501a6e03093bea9d864d1CAS |

[23]  E. R. Stephens, M. Dumlao, D. Xiao, D. Zhang, W. A. Donald, J. Am. Soc. Mass Spectrom. 2015, 26, 2081.
         | CrossRef | 1:CAS:528:DC%2BC2MXhs1WqtL%2FN&md5=893d665207631c7c623638793ef1af79CAS |

[24]  J.-C. Wolf, M. Schaer, P. P. Siegenthaler, R. Zenobi, Eur. J. Mass Spectrom. 2015, 21, 305.
         | CrossRef | 1:CAS:528:DC%2BC28XovFyqtQ%3D%3D&md5=0ed1b4b0a423ca7f3f7111ef654683c8CAS |

[25]  J.-C. Wolf, R. Etter, M. Schaer, P. Siegenthaler, R. Zenobi, J. Am. Soc. Mass Spectrom. 2016, 27, 1197.
         | CrossRef | 1:CAS:528:DC%2BC28XkvFGksL8%3D&md5=920155e65749a97ff10d4ae732c2d8f7CAS |

[26]  J. H. Gross, Mass Spectrometry 2017 (Springer: Berlin).

[27]  R. B. Cody, A. J. Dane, in Ambient Ionization Mass Spectrometry (Eds M. Domin, R. Cody) 2015, pp. 23–57 (The Royal Society of Chemistry: London).

[28]  M. Zhou, J. F. McDonald, F. M. Fernández, J. Am. Soc. Mass Spectrom. 2010, 21, 68.
         | CrossRef |

[29]  R. Hippler, S. Pfau, M. Schmidt, K. H. Schoenbach, Low-Temperature Plasma Physics: Fundamental Aspects and Applications 2001 (Wiley-VCH: Berlin).

[30]  N. Na, C. Zhang, M. Zhao, S. Zhang, C. Yang, X. Fang, X. Zhang, J. Mass Spectrom. 2007, 42, 1079.
         | CrossRef | 1:CAS:528:DC%2BD2sXpsVGmtr8%3D&md5=94b3f1ea786f9e219fecca4887bd081bCAS |

[31]  J. D. Harper, N. A. Charipar, C. C. Mulligan, X. Zhang, R. G. Cooks, Z. Ouyang, Anal. Chem. 2008, 80, 9097.
         | CrossRef | 1:CAS:528:DC%2BD1cXhtlaktb%2FI&md5=0406747f6cdc0f77c06ebfdf451461b7CAS |

[32]  Y. Zhao, Z. Wei, H. Zhao, J. Jia, Z. Chen, S. Zhang, Z. Ouyang, X. Ma, X. Zhang, Anal. Chem. 2016, 88, 10805.
         | CrossRef | 1:CAS:528:DC%2BC28XhslWjsLjJ&md5=9e1adeca5691b9aa3943e25bea250347CAS |

[33]  R. B. Cody, J. A. Laramée, H. D. Durst, Anal. Chem. 2005, 77, 2297.
         | CrossRef | 1:CAS:528:DC%2BD2MXit1ahurk%3D&md5=a00cf715042d492d8c2ec58f0352a187CAS |

[34]  M. M. Nudnova, L. Zhu, R. Zenobi, Rapid Commun. Mass Spectrom. 2012, 26, 1447.
         | CrossRef | 1:CAS:528:DC%2BC38XmvF2msr0%3D&md5=f37c76eae2a0b611b917eec6100134d1CAS |

[35]  M. F. Mirabelli, J.-C. Wolf, R. Zenobi, Anal. Chem. 2016, 88, 7252.
         | CrossRef | 1:CAS:528:DC%2BC28XhtVCjsbfJ&md5=d7d0004fee11a0f52d288c4221797356CAS |

[36]  V. Gabelica, E. De Pauw, M. Karas, Int. J. Mass Spectrom. 2004, 231, 189.
         | CrossRef | 1:CAS:528:DC%2BD2cXhtVCqsbg%3D&md5=134fdb64b974526f6dd575ebd7a7a9e6CAS |

[37]  M. Nefliu, J. N. Smith, A. Venter, R. G. Cooks, J. Am. Soc. Mass Spectrom. 2008, 19, 420.
         | CrossRef | 1:CAS:528:DC%2BD1cXjtlWjs70%3D&md5=8c2a0cbc47e4fd9bf3d36eddee778a83CAS |

[38]  W. A. Donald, G. N. Khairallah, R. A. J. O’Hair, J. Am. Soc. Mass Spectrom. 2013, 24, 811.
         | CrossRef | 1:CAS:528:DC%2BC3sXnsVWnu7o%3D&md5=43b6afeb048a29e85c6e2bff949f3d5aCAS |

[39]  A. I. S. Holm, W. A. Donald, P. Hvelplund, M. K. Larsen, S. B. Nielsen, E. R. Williams, J. Phys. Chem. A 2008, 112, 10721.
         | CrossRef | 1:CAS:528:DC%2BD1cXht1Sjt73N&md5=5108d71472de68901c12a3ced8a1084aCAS |

[40]  W. A. Donald, R. D. Leib, M. Demireva, E. R. Williams, J. Am. Chem. Soc. 2011, 133, 18940.
         | CrossRef | 1:CAS:528:DC%2BC3MXhtlWrs7fJ&md5=c607984b86b61c0eade6eb38a4aaa45cCAS |

[41]  W. A. Donald, E. R. Williams, Pure Appl. Chem. 2011, 83, 2129.
         | CrossRef | 1:CAS:528:DC%2BC3MXhs1Orsb%2FO&md5=dc7110888181ad91b96cff464eb9453dCAS |

[42]  I. W. Griffiths, E. S. Mukhtar, R. E. March, F. M. Harris, J. H. Beynon, Int. J. Mass Spectrom. Ion Phys. 1981, 39, 125.
         | CrossRef | 1:CAS:528:DyaL3MXltl2jtLg%3D&md5=7cf79864c19322fa313223447f77dbfdCAS |

[43]  H. I. Kenttämaa, R. G. Cooks, Int. J. Mass Spectrom. Ion Process. 1985, 64, 79.
         | CrossRef |

[44]  K. V. Barylyuk, K. Chingin, R. M. Balabin, R. Zenobi, J. Am. Soc. Mass Spectrom. 2010, 21, 172.
         | CrossRef | 1:CAS:528:DC%2BC3cXjslykuw%3D%3D&md5=5a2cb31149608a5aa460d8128d1a62b9CAS |

[45]  J. F. Greisch, V. Gabelica, F. Remacle, E. De Pauw, Rapid Commun. Mass Spectrom. 2003, 17, 1847.
         | CrossRef | 1:CAS:528:DC%2BD3sXmtlyqsLg%3D&md5=94b8f97105b0f47d1a8323dc8e61d05dCAS |

[46]  Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies 2007 (CRC Press: Boca Raton, FL).

[47]  D. Morsa, V. Gabelica, F. Rosu, J. Oomens, E. De Pauw, J. Phys. Chem. Lett. 2014, 5, 3787.
         | CrossRef | 1:CAS:528:DC%2BC2cXhslKktr%2FM&md5=1f84556ff05362dd90ee559fb6b4b3e9CAS |

[48]  J. E. Carpenter, C. P. McNary, A. Furin, A. F. Sweeney, P. B. Armentrout, J. Am. Soc. Mass Spectrom. 2017, 28, 1876.
         | 1:CAS:528:DC%2BC2sXotVOms7k%3D&md5=3f2d6f82bf9ac30e83f727a6273485c6CAS |

[49]  D. Gatineau, A. Memboeuf, A. Milet, R. B. Cole, H. Dossmann, Y. Gimbert, D. Lesage, Int. J. Mass Spectrom. 2017, 417, 69.
         | CrossRef | 1:CAS:528:DC%2BC2sXlvVSqsb0%3D&md5=9874bbc28edb631d00de875bb94047f5CAS |

[50]  D. Al-Balaa, A. Rajchl, A. Grégrová, R. Ševčík, H. Čížková, J. Mass Spectrom. 2014, 49, 911.
         | CrossRef | 1:CAS:528:DC%2BC2cXhsFOlsLvM&md5=b37f57edd18603d586583fecdd998611CAS |

[51]  M. G. Mazzotta, J. O. E. Young, J. W. Evans, L. A. Dopierala, Z. A. Claytor, A. C. Smith, C. Snyder, N. C. Tice, D. L. Smith, Anal. Methods 2015, 7, 4003.
         | CrossRef | 1:CAS:528:DC%2BC2MXmsFehtL0%3D&md5=650e4f9d3225bea7f6b04667b260bfbcCAS |

[52]  A. T. Navare, J. G. Mayoral, M. Nouzova, F. G. Noriega, F. M. Fernández, Anal. Bioanal. Chem. 2010, 398, 3005.
         | CrossRef | 1:CAS:528:DC%2BC3cXht1KnsrnJ&md5=d6c2cd77f3982449aeb20a135104520fCAS |

[53]  G. A. Harris, F. M. Fernández, Anal. Chem. 2009, 81, 322.
         | CrossRef | 1:CAS:528:DC%2BD1cXhsVGnsLfE&md5=48a4c29dd8714324636174e86e66fadbCAS |

[54]  L. Song, J. E. Bartmess, in Ambient Ionization Mass Spectrometry (Eds M. Domin, R. Cody) 2015, Ch. 3, pp. 58–103 (The Royal Society of Chemistry: London).


Full Text PDF (965 KB) Export Citation Cited By (1)