Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

The crystal and molecular structures of the bispyridine and 1,10-phenanthroline adducts of Bis(ethyl 3-mercaptobut-2-enoato)nickel(II)

J Sachinidis, MF Mackay and MW Grant

Australian Journal of Chemistry 35(2) 331 - 340
Published: 1982

Abstract

X-ray analyses of monoclinic crystals of the bispyridine and 1,10-phenanthroline adducts of the monothioacetylacetonate complex bis(ethyl 3-mercaptobut-2-enoato)nickel(n), Ni(eosm)2,* have defined their structures. Crystals of the bispyridine adduct Ni(eosm)2,py2, C22H28N2NiO4S2, belong to the space group P21/c with a 8.865(6), b 15.758(4), c 9.136(3)Ǻ, β 109.18(4)°, Z 2. Crystals of the 1,10-phenanthroline adduct Ni(eosm)2,phen, C24H26N2NiO4S2, belong to the space group P21c with a 12.451(2), b 16.949(1), c 15 5921(2) Ǻ, β 130.97(1)°, Z 4. The structures were refined with diffractometer data measured with Cu Ka radiation to R 0.047 (1962 terms) for the bispyridine adduct and R 0.061 (3115 terms) for the phenanthroline adduct. The geometry about the nickel in each complex is distorted octahedral. The molecule of the bispyridine adduct has exact rn symmetry with the two sulfur atoms cis-equatorial and the nitrogen atoms axial. In the phenan- throline adduct, pairs of sulfur, nitrogen and oxygen atoms are in cis configurations. In the bis-pyridine adduct, the Ni-N bond lengths, 2.153(3) and 2.182(4) Ǻ, are significantly longer than those in other bispyridine adducts of nickel(II) species. It is suggested that the long Ni-N distances reflect the relative instability of the bispyridine adduct, and thermodynamic data are presented to support this.

https://doi.org/10.1071/CH9820331

© CSIRO 1982

Committee on Publication Ethics


Rent Article (via Deepdyve) Export Citation Cited By (8) Get Permission

View Dimensions