NHC-Promoted Rauhut-Currier Reactions between Vinyl Sulfones and α,β-Unsaturated Aldehydes

Roxanne L. Atienza, and Karl A. Scheidt*
Department of Chemistry, Northwestern University,
2145 Sheridan Road, Evanston, Illinois 60208

Accessory Publication

General Information ... 2
Procedure for the Synthesis of 1,1-bis(phenylsulfonyl)ethylene 1 ... 2
Spectral data .. 3
X-ray Crystal Structure of 2 ... 43
General Information

All reactions were carried out under a nitrogen atmosphere in flame-dried glassware with magnetic stirring. Dichloromethane was purified by passage through a bed of activated alumina. Reagents were purified prior to use unless otherwise stated following the guidelines of Perrin and Armarego. Purification of reaction products was carried out by flash chromatography using EM Reagent silica gel 60 (230-400 mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel 60-F plates. Visualization was accomplished with UV light. Infrared spectra were recorded on a Perkin Elmer 1600 series FT-IR spectrometer. 1H-NMR spectra were recorded on a Bruker A500 (500 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl$_3$ at 7.26 ppm). Data are reported as (ap = apparent, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad; coupling constant(s) in Hz; integration. Proton-decoupled 13C-NMR spectra were recorded on a Bruker A500 (125 MHz) spectrometer and are reported in ppm using solvent as an internal standard (CDCl$_3$ at 77.0 ppm). Mass spectral data for the products were acquired on an Agilent 6210 LC-Tof High Resolution Mass Spectrometer, using Electro Spray Ionization source. Samples were introduced using 1uL Direct injection. Solvent used was of 90%MeOH/10% water/ 0.1% Formic acid flowing at 0.5 mL/min.

Procedure for the Synthesis of 1,1-bis(phenylsulfonyl)ethylene 1

Following a procedure from Steinbeck3, to a 100mL round bottom flask containing a magnetic stirring bar was added paraformaldehyde (2.6 g, 28.9 mmol) and methanol (22 mL, 1.3 M). The slurry was then heated to reflux at 80 °C. Once the solution became transparent, the flask was removed from heat and cooled to 0 °C. To the flask was added piperidine (7 mL, 6 mol) at 0 °C and stirred for 15 min. Then, the corresponding arylsulfonyl methane (2.1 g, 7.1 mmol) in 1,4-dioxane (14 mL, 0.5 M) was added dropwise at 0 °C. The reaction stirred for 15 min. Ice water was added to the flask and after 5 min, the solid was collected through vacuum filtration. The white solid (96 %) was dried over P$_2$O$_5$. The white solid was dissolved in benzene in a flame-dried 100 mL round bottom flask. Dry HCl gas was bubbled into the solution until the slurry becomes clear. At this point, the reaction flask was heated to reflux at 80 °C for 3 hrs. The reaction was cooled to 23 °C and the reaction mixture was filtered and concentrated. Recrystallization from benzene/hexanes or ethyl acetate/hexanes produced an off-white solid (91 %). The spectral data matches the literature data.

Spectral data

[Structural diagram of a molecule with labels O, H, SO₂Ph, and SO₂Ph]
Sample Name: aj2
Position: P1-C2
Data Filename: AJ2_07142011_ESI.d
ACQ Method: ESI_ASL_POS_Main_020
Instrument Name: Instrument 1
Instrument 1: Success
Sample Type: Sample
User Name:
Acquired Time: 7/14/2011 12:43:16 PM

ESI Scan (0.140-0.172 min, 3 scans) Frag=230.0V AJ2_07142011_ESI.d Subtract

Exact Mass calcd (M+H)+: 441.0825

441.0825 (M+H)+

458.1087 (M+NH4)+

463.0642 (M+Na)+
3

Cl

SO₂Ph

SO₂Ph

H

O
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>a3</th>
<th>Position</th>
<th>P1-C2</th>
<th>Instrument Name</th>
<th>Instrument 1</th>
<th>User Name</th>
<th>IRM Calibration Status</th>
<th>Acquired Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inj Vol</td>
<td>0.3</td>
<td>InjPosition</td>
<td></td>
<td>ACQ Method</td>
<td>ESI_ASL_Pos_Main_020</td>
<td></td>
<td>Success</td>
<td>7/14/2011 12:45:50 PM</td>
</tr>
<tr>
<td>Data Filename</td>
<td>AJ3_07142011_ESI.d</td>
<td></td>
<td></td>
<td>SampleType</td>
<td>Sample</td>
<td>Comment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exact Mass calcd (M+H)+: 475.0435

+ESI Scan (0.094-0.126 min, 3 scans) Frag=230.0V AJ3_07142011_ESI.d Subtract

Counts vs. Mass-to-Charge (m/z)	474	475	476	477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502			
475.0438 (M+H)+																																
477.0411 (M+H)+																																
492.0702 (M+NH4)+																																
497.0253 (M+Na)+																																
499.0227 (M+Na)+																																

Diagram:

- Molecule structure and molecular masses are shown.
- Counts vs. Mass-to-Charge (m/z) range is from 474 to 502.
- Peaks at 475.0438 and 477.0411 are labeled with (M+H)+.
- Peaks at 492.0702 and 497.0253 are labeled with (M+NH4)+.
- Peaks at 499.0227 are labeled with (M+Na)+.
+ESI Scan (0.095-0.112 min, 2 scans) Frag=230.0V AJ4_07142011_ESI.d Subtract

Exact Mass calcld (M+H)+: 491.0981

IRM Calibration Status: Success

Sample Name: aj4
Inj Vol: 0.3
Data Filename: AJ4_07142011_ESI.d

Instrument Name: Instrument 1
Inj Position SampleType: P1-C3 Sample
Position: Sample

User Name: Inj Vol: 0.3

Acquired Time: 7/14/2011 12:48:22 PM

Exact Mass calcd (M+H)+: 491.0981
Sample Name aj4 Position P1-C3 Instrument Name Instrument 1 User Name
Inj Vol 0.3 InjPosition AcQ Method ACQ Method SampleType Sample IRM Calibration Status Success
Data Filename AJ4_07142011_ESI.d ESI_ASL_Pos_Main_020 Comment Acquired Time 7/14/2011 12:48:22 PM

Exact Mass calcd (M+H)+: 491.0981

+ESI Scan (0.096-0.112 min, 2 scans) Frag=230.0V AJ4_07142011_ESI.d Subtract

491.0983 (M+H)+

508.1249 (M+NH4)+

513.0800 (M+Na)+

Counts vs. Mass-to-Charge (m/z)
Br

H

SO₂Ph

SO₂Ph

5

Accessory Publication
Sample Name: aj5
Position: P1-C4
Instrument Name: ESI_ASL_Pos_Main_020
User Name:

Data Filename: AJ5_07142011_ESI.d
ACQ Method: ESI_ASL_Pos_Main_020
SampleType: Sample
IRM Calibration Status: Success
Comment:

Acquired Time: 7/14/2011 12:50:50 PM

Exact Mass calcd (M+H)+: 518.9930

Br
O
H
SO2Ph

Exact Mass calcd (M+H)+: 518.9930

SO2Ph

SO2Ph

207.0989
350.0888
730.0792
922.0953

Counts vs. Mass-to-Charge (m/z)

x10^4

820.0017

Br
O
H
SO2Ph

Exact Mass calcd (M+H)+: 518.9930

SO2Ph

SO2Ph

207.0989
350.0888
730.0792
922.0953

Counts vs. Mass-to-Charge (m/z)
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Inj Vol</th>
<th>Inj Position</th>
<th>Instrument Name</th>
<th>User Name</th>
<th>IRM Calibration Status</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>aj5</td>
<td>0.3</td>
<td>P1-C4</td>
<td>ESI_ASL_Pos_Main_020</td>
<td></td>
<td>Success</td>
<td></td>
</tr>
</tbody>
</table>

Data Filename: AJ5_07142011_ESI.d

Acq Method: ESI_ASL_Pos_Main_020

Instrument Name: Instrument 1

User Name: Inj Vol

Inj Position: Sample

Sample Type: P1-C4

Sample Name: aj5

Sample IRM Calibration Status: Success

Acquired Time: 7/14/2011 12:50:50 PM

Graph Details:

- **ESI Scan (0.098-0.114 min, 2 scans) Frag=230.0V AJ5_07142011_ESI.d Subtract**

- Exact Mass calcld (M+H)+: 518.9930

- Peaks at:
 - 518.9942 (M+H)+
 - 530.0517 (M+H)+
 - 536.0262 (M+NH4)+
 - 538.0170 (M+NH4)+
 - 540.9789 (M+Na)+
 - 542.9735 (M+Na)+

Counts vs. Mass-to-Charge (m/z)
Cl

O

H

SO₂Ph

SO₂Ph

6
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Position</th>
<th>Inj Vol</th>
<th>Data Filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>aj6</td>
<td>P1-C5</td>
<td>0.3</td>
<td>AJ6_07142011_ESI.d</td>
</tr>
</tbody>
</table>

ACQ Method

- **ESI_ASL_Pos_Main_020**

Comment

- User Name: Inj Vol: 0.3
- InjPosition: SampleType: Sample
- Acquired Time: 7/14/2011 12:53:23 PM

Exact Mass

- **calcd (M+H)+: 475.0435**

Exact Mass calcld (M+H)+: 475.0435
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Position</th>
<th>Inj Vol</th>
<th>InjPosition</th>
<th>ACQ Method</th>
<th>SampleType</th>
<th>Instrument Name</th>
<th>RM Calibration Status</th>
<th>User Name</th>
<th>Comment</th>
<th>IRM Calibration Status</th>
<th>Sample Name</th>
<th>Instrument Name</th>
<th>User Name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>aj6</td>
<td>P1-C5</td>
<td>0.3</td>
<td></td>
<td>ESI_ASL_Pos_Main_020</td>
<td>Sample</td>
<td>Instrument 1</td>
<td>Success</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Filename

AJ6_07142011_ESI.d

Acquired Time

7/14/2011 12:53:23 PM

Graphical Representation

+ESI Scan (0.082-0.131 min, 4 scans) Frag=230.0V AJ6_07142011_ESI.d Subtract

475.0440 (M+H)+

477.0414 (M+H)+

492.0703 (M+NH4)+

497.0268 (M+Na)+

499.0236 (M+Na)+
7

- NC
- SO₂Ph
- SO₂Ph
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>a7</th>
<th>Position</th>
<th>P1-06</th>
<th>Instrument Name</th>
<th>Instrument 1</th>
<th>User Name</th>
<th>IRM Calibration Status</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inj Vol</td>
<td>0.3</td>
<td>InjPosition</td>
<td></td>
<td>ACQ Method</td>
<td>ESI_01</td>
<td>Position</td>
<td>Sample</td>
<td>Sample Type</td>
</tr>
<tr>
<td>Data Filename</td>
<td>AJ7_07142011_ESI.d</td>
<td>ACQ Method</td>
<td>ESI_01</td>
<td>Position</td>
<td>Sample</td>
<td>Sample</td>
<td>Sample</td>
<td>Sample Type</td>
</tr>
</tbody>
</table>

Comment

User Name: Inj Vol: 0.3

Inj Position

Sample Type: Sample

Sample Name

aj7

Position

P1-C6

Instrument Name

ESI_ASL_Pos_Main_020

IRM Calibration Status

Success

Acquired Time

7/14/2011 12:55:56 PM

Acquired Time

7/14/2011 12:55:56 PM

Acquired Time

7/14/2011 12:55:56 PM

Chart

+ESI Scan (0.125 min) Frag=230.0V AJ7_07142011_ESI.d Subtract

483.0999

(M+NH4)+

953.1224

Exact Mass calcd (M+H)+: 466.0777

241.1312

610.1768

1418.1863

Counts vs. Mass-to-Charge (m/z)
Sample Name: aj7 Position: P1-06 Instrument Name: Instrument 1 User Name:

Data Filename: AJ7_07142011_ESI.d ACQ Method: ESI_ASL_Pos_Main_020 Comment:

Inj Vol: 0.3 InjPosition: SampleType: Sample IRM Calibration Status: Success Acquired Time: 7/14/2011 12:55:56 PM

Graph:

- ESI Scan (0.125 min) Frag=230.0V AJ7_07142011_ESI.d Subtract

Exact Mass calcd (M+H)+: 466.0777

466.0736 (M+H)–

488.0555 (M+Na)+

483.0550 (M+NH4)+

Counts vs. Mass-to-Charge (m/z)
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>a8</th>
<th>Position</th>
<th>P1-C7</th>
<th>Instrument Name</th>
<th>Instrument 1</th>
<th>User Name</th>
<th>IRM Calibration Status</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inj Vol</td>
<td>0.3</td>
<td>InjPosition</td>
<td></td>
<td>ACQ Method</td>
<td>ESI_ASL_Pos_Main_020</td>
<td>Sample</td>
<td>Success</td>
<td></td>
</tr>
<tr>
<td>Data Filename</td>
<td>a8_07142011_ESI.d</td>
<td>SampleType</td>
<td></td>
<td>Instrument Name</td>
<td>Instrument 1</td>
<td>User Name</td>
<td>IRM Calibration Status</td>
<td>Comment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Instrument Name</td>
<td>Instrument 1</td>
<td>User Name</td>
<td>IRM Calibration Status</td>
<td>Comment</td>
</tr>
</tbody>
</table>

Data Filename: a8_07142011_ESI.d

Acquired Time: 7/14/2011 12:58:28 PM

Chemical Structure Image:

- Exact Mass calc'd (M+H)^+: 491.0981
- Exact Mass calc'd (M-H)^-: 491.0981

Spectrogram Image:

- ESI Scan (0.102-0.119 min, 2 scans)
- Frag=230.0V
- AJ8_07142011_ESI.d
- Subtract 401.0082 (M+H)^+
- 207.0823
- 349.0889
- 267.1165
- 267.1165
- 700.1866
- 998.2146
O₂N
SO₂Ph
SO₂Ph

\(9\)
O2N
SO2Ph
SO2Ph
O2N
Sample Name: aj9
Inj Vol: 0.3
Data Filename: AJ9_07142011_ESI.d
ACQ Method: ESI_ASL_Pos_Main_020
User Name: Inj Vol: 0.3
Sample Type: Sample
Acquired Time: 7/14/2011 1:01:09 PM

- ESI Scan (0.087-0.136 min, 4 scans) Frag=230.0V AJ9_07142011_ESI.d Subtract
 + 486.0677 (M+H)+
 503.0547 (M+NH4)+
 508.0463 (M+Na)+

Exact Mass calc'd (M+H)+: 486.0676

![Graphical representation of the mass spectrum]
O
Me
SO₂Ph
SO₂Ph
\[
\text{Me} \quad \text{SO}_2\text{Ph} \\
\text{SO}_2\text{Ph}
\]
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Position</th>
<th>Instrument Name</th>
<th>User Name</th>
<th>IRM Calibration Status</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>aj10</td>
<td>P1-C9</td>
<td>Instrument 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acquired Time: 7/14/2011 1:03:35 PM

Data Filename: AJ10_07142011_ESI.d

Inj Vol: 0.3

Inj Position: Sample

Sample Type: Sample

Instrument Name: ESI_ASL_Pos_Main_020

Comment: Success

Exact Mass calcd (M+H)+: 483.0931

![Molecular structure diagram](image)
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>a11</th>
<th>Position</th>
<th>P1-D1</th>
<th>Instrument Name</th>
<th>Instrument 1</th>
<th>User Name</th>
<th>Data Filename</th>
<th>Acquired Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inj Vol</td>
<td>0.3</td>
<td>InjPosition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Filename</td>
<td>AJ11_07142011_ESI.d</td>
<td>ACQ Method</td>
<td>ESI_ASL_Pos_Main_020</td>
<td>Sample</td>
<td>IRM Calibration Status</td>
<td>Success</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td>SampleType</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph: ESI Scan

- Exact Mass calcd (M+H)+: 499.0880
- Precursor 516.1146
- Product 1014.1031
- Other peaks: 121.0522, 325.0525, 622.0664, 922.0008, 1120.1464, 1517.2259

Fragmentation: Frag=230.0V AJ11_07142011_ESI.d Subtract
ESI Scan (0.087-0.136 min, 4 scans) Frag=230.0V AJ11_07142011_ESI.d Subtract 151.1146 (M+H+) +

Exact Mass calcd (M+H)+: 499.0880

499.0878 (M+H)+

521.0607 (M+Na)+

Counts vs. Mass-to-Charge (m/z)
X-ray Crystal Structure of 2

A colorless tabular crystal of C23 H20 O5 S2 having approximate dimensions of 0.52 x 0.29 x 0.12 mm was mounted using oil (Infineum V8512) on a glass fiber. All measurements were made on a Bruker APEX-II CCD Diffractometer with a CuKα source at a temperature of 250(2) K with a theta range for data collection of 1.84 to 30.47°. Cell constants and an orientation matrix for data collection corresponded to a Triclinic, space group P-1, with: a = 9.3104(5) Å, b =10.4613(6) Å, c = 11.7985(6) Å, α = 89.825(3)°, β = 70.317(2)° and γ = 72.560(2)°. For Z = 2 and F.W. = 440.51, the calculated density is 1.426 g/cm³. The linear absorption coefficient, μ, for MoKα radiation is 0.293 mm⁻¹. The maximum and minimum transmission factors were: 0.9662 and 0.8625, respectively. Of the 27149 reflections which were collected, 6158 were unique (Rint = 0.0668). The final cycle of full-matrix least-squares refinement on F² was based on 6158 reflections and 271 variable parameters and converged with agreement factors of: R1 = 0.0496 and wR2 = 0.1468 and Goodness-of-fit on F² =0.990. Further information is contained in the CIF file deposited at the CCDC.

The X-ray crystallography data has been submitted to the CCDC. CCDC 833171 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

<table>
<thead>
<tr>
<th>Bond precision: C-C = 0.0036 A</th>
<th>Wavelength=0.71073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell:</td>
<td></td>
</tr>
<tr>
<td>a=9.3104(5) b=10.4613(6) c=11.7985(6)</td>
<td>alpha=89.825(3) beta=70.317(2) gamma=72.560(2)</td>
</tr>
<tr>
<td>Temperature: 250 K</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculated</th>
<th>Reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>1026.13(10)</td>
</tr>
<tr>
<td>Space group</td>
<td>P -1</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 1</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C23 H20 O5 S2</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C23 H20 O5 S2</td>
</tr>
<tr>
<td>Mr</td>
<td>440.53</td>
</tr>
<tr>
<td>Dx, g cm^-3</td>
<td>1.426</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Mu (mm^-1)</td>
<td>0.293</td>
</tr>
<tr>
<td>F000</td>
<td>460.0</td>
</tr>
<tr>
<td>F000'</td>
<td>460.71</td>
</tr>
<tr>
<td>h,k,lmax</td>
<td>13,14,16</td>
</tr>
<tr>
<td>Nref</td>
<td>6251</td>
</tr>
<tr>
<td>Tmin,Tmax</td>
<td>0.903,0.965</td>
</tr>
<tr>
<td>Tmin'</td>
<td>0.859</td>
</tr>
</tbody>
</table>

Correction method= INTEGRATION

Data completeness= 0.985 Theta(max)= 30.470

R(reflections)= 0.0496(4533) wR2(reflections)= 0.1606(6158)

S = 0.990 Npar= 271

The following ALERTS were generated. Each ALERT has the format

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level B

<table>
<thead>
<tr>
<th>Alert name</th>
<th>Description</th>
<th>Alert type</th>
<th>Alert level</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAT093_ALERT_1_B</td>
<td>No su's on H-atoms, but refinement reported as .</td>
<td>mixed</td>
<td>B</td>
</tr>
<tr>
<td>PLAT241_ALERT_2_B</td>
<td>Check High Ueq as Compared to Neighbors for C18</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PLAT241_ALERT_2_B</td>
<td>Check High Ueq as Compared to Neighbors for C20</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>PLAT410_ALERT_2_B</td>
<td>Short Intra H...H Contact H4A .. H18 .. 1.81 Ang.</td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>
Alert level C

ABSTY02_ALERT_1_C An _exptl_absorpt_correction_type has been given without a literature citation. This should be contained in the _exptl_absorpt_process_details field.

Absorption correction given as integration

PLAT048_ALERT_1_C MoietyFormula Not Given ?
PLAT213_ALERT_2_C Atom C18 has ADP max/min Ratio 3.1 prola
PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.8 Ratio
PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C19
PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C5
PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11

Alert level G

PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF ?

0 ALERT level A = Most likely a serious problem - resolve or explain
4 ALERT level B = A potentially serious problem, consider carefully
7 ALERT level C = Check. Ensure it is not caused by an omission or oversight
1 ALERT level G = General information/check it is not something unexpected

3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
8 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 27/06/2011; check.def file version of 27/06/2011