Using Quenching Kinetics and Thermodynamics of Amino-Fluorophores As Empirical Tools for Predicting Boronic Acid Sensors Suitable for Use in Physiological Conditions

Nicholas McGregor,¹ Christophe Pardin,¹,² W.G. Skene*¹

¹Laboratoire de caractérisation photophysique des matériaux conjugués
Department of Chemistry, Pavillon JA Bombardier,
Université de Montréal, CP 6128, succ. Centre-ville,
Montreal, Quebec, Canada H3C 3J6

²Department of Chemistry, D’Iorio Hall,
University of Ottawa, 10 Marie Curie,
Ottawa, Ontario, Canada K1N 6N5
Tables of contents

Figure 1: Normalized absorbance (black) and fluorescence (red) spectra of 1. 5
Figure 2: Normalized absorbance (black) and fluorescence (red) spectra of 2. 6
Figure 3: Normalized absorbance (black) and fluorescence (red) spectra of 3. 7
Figure 4: Normalized absorbance (black) and fluorescence (red) spectra of 4. 8
Figure 5: Normalized absorbance (black) and fluorescence (red) spectra of 5. 9
Figure 6: Normalized absorbance (black) and fluorescence (red) spectra of 6. 10
Figure 7: Normalized absorbance (black) and fluorescence (red) spectra of 11. 11
Figure 8: Normalized absorbance (black) and fluorescence (red) spectra of 12. 12
Figure 9: Normalized absorbance (black) and fluorescence (red) spectra of 13. 13
Figure 10: Normalized absorbance (black) and fluorescence (red) spectra of 14..................... 14
Figure 11: Fluorescence spectra of 21 with increasing concentrations of 10 in anhydrous acetonitrile. Inset: Stern-Volmer plot of Φ_0/Φ vs. [10] including linear fit and basic statistics showing diffusion limited fluorescence quenching of 21 with 10. 15
Figure 12: Fluorescence spectra of 11 with increasing concentrations of 10 in anhydrous acetonitrile. Inset: Stern-Volmer plot of Φ_0/Φ vs. [10] including linear fit and basic statistics showing the diffusion limited relationship between imine concentration and fluorescence quenching. ... 16
Figure 13: Fluorescence spectra of 11 with increasing concentrations of phenylboronic acid in anhydrous acetonitrile. Inset: Stern-Volmer plot of Φ_0/Φ vs. [phenylboronic acid] including linear fit and basic statistics showing the diffusion limited relationship between phenylboronic acid concentration and fluorescence quenching. .. 17
Figure 14: Fluorescence spectra of 12 with increasing concentrations of phenylboronic acid in pH 7.4 PBS. Inset: Stern-Volmer plot of Φ_0/Φ vs. [phenylboronic acid] including linear fit and basic statistics showing the lack of fluorescence quenching of 12 with phenylboronic acid. .. 18
Figure 15: Fluorescence spectra of 13 with increasing concentrations of 10 in anhydrous acetonitrile. Inset: Stern-Volmer plot of Φ_0/Φ vs. [10] including linear fit and basic statistics showing the lack of fluorescence quenching of 13 with 10. 19
Figure 16: Fluorescence spectra of 14 with increasing concentrations of phenylboronic acid in pH 7.4 PBS. Inset: Stern-Volmer plot of Φ_0/Φ vs. [phenylboronic acid] including linear fit and basic statistics showing the lack of fluorescence quenching of 14 with phenylboronic acid. .. 20
Figure 17: Fluorescence spectra of 20 with increasing concentrations of 10 in anhydrous acetonitrile. Inset: Stern-Volmer plot of Φ_0/Φ vs. [10] including linear fit and basic statistics showing diffusion limited fluorescence quenching of 20 with 10. 21
Figure 18: Fluorescence spectra of 1 in pH 7.4 PBS with added fructose demonstrating the fluorescence revival of 1 upon saccharide addition. Inset: Plot of [1:fructose] vs. [fructose] with a one-site binding fit overlayed and basic statistics used to determine the binding constant of 1 with fructose. .. 22
Figure 19: Fluorescence spectra of 5 in pH 7.4 PBS with added fructose demonstrating the fluorescence revival of 5 upon saccharide addition. Inset: Plot of [5:fructose] vs. [fructose] with a one-site binding fit overlayed and basic statistics used to determine the binding constant of 5 with fructose. .. 23
Figure 20: Fluorescence spectra of 6 in pH 7.4 PBS with added fructose demonstrating the fluorescence revival of 6 upon saccharide addition. Inset: Plot of [6:fructose] vs.
[fructose] with a two-site binding fit overlayed and basic statistics used to determine the binding constant of 6 with fructose.. 24
Figure 21: Fluorescence pH titrations of 1 without saccharide (■), with 100 mM glucose (■) and with 50 mM fructose (■) (~saturation) demonstrating the reduction of pKa of the boronic acid by formation of the boronic ester.. 25
Figure 22: Fluorescence pH titrations of 1 without saccharide (■), with 10 mM fructose (■) and with 100 mM fructose (■) (~saturation) demonstrating the reduction of pKa of the boronic acid by formation of the boronic ester.. 26
Figure 23: Fluorescence pH titrations of 1 without saccharide (■), with 10 mM fructose (■) and with 100 mM fructose (■) (~saturation) demonstrating the reduction of pKa of the boronic acid by formation of the boronic ester.. 27
Figure 24: Cyclic voltammogram of the cathodic process of phenylboronic acid in anhydrous dimethylformamide.. 28
Figure 25: Cyclic voltammogram of the anodic process of 9 in anhydrous dimethylformamide. 29
Figure 26: Cyclic voltammogram of the cathodic process of 10 in anhydrous dimethylformamide.. 30
Figure 27: Cyclic voltammogram of the anodic process of 11 in anhydrous dimethylformamide. .. 31
Figure 28: Cyclic voltammogram of the anodic process of 12 in anhydrous dimethylformamide. .. 32
Figure 29: Cyclic voltammogram of the anodic process of 13 in anhydrous dimethylformamide. .. 33
Figure 30: Cyclic voltammogram of the anodic process of 20 in anhydrous dimethylformamide. .. 34
Figure 31: Cyclic voltammogram of the anodic process of 21 in anhydrous dimethylformamide. .. 35
Figure 32: 1H NMR of N-Boc-5-aminonaphthalene-1-sulfonic acid in CDCl3.. 36
Figure 33: 13C NMR of N-Boc-5-aminonaphthalene-1-sulfonic acid in CDCl3.. 37
Figure 34: 1H NMR of N-Boc-5-aminonaphthalene-1-sulfonyl chloride in CDCl3.. 38
Figure 35: 13C NMR of N-Boc-5-aminonaphthalene-1-sulfonyl chloride in CDCl3.. 39
Figure 36: 1H NMR of N-Boc-5-aminonaphthalene-1-tert-butylsulfonamide in CDCl3.. 40
Figure 37: 1H NMR of 5-aminonaphthalene-1-sulfonamide in 5% D2O in CD3CN.. 42
Figure 38: 1H NMR of N-phenylborono-5-aminonaphthalene-1-sulfonamide in CD3OD.. 43
Figure 39: 1H NMR of N-phenylborono-5-aminonaphthalene-1-sulfonamide in CD3OD+Et3N. 46
Figure 40: 1H NMR of N-benzyl-5-aminonaphthalene-1-sulfonamide in D6-DMSO.. 44
Figure 41: 1H-NMR of N-benzylidene-5-aminonaphthalene-1-sulfonamide in D6-DMSO.. 45
Figure 42: 1H NMR of N-phenylborono-5-aminonaphthalene-1-sulfonic acid in CD3OD+Et3N. 46
Figure 43: 1H NMR of N-phenylborono-5-amin-1-naphthol-3-sulfonic acid in CD3OD+Et3N. 48
Figure 44: 1H NMR of FluoHc in CD3OD.. 51
Figure 45: 1H-NMR of tBuFluoHa in CDCl3.. 49
Figure 46: 13C NMR of tBuFluoHa in CDCl3.. 50
Figure 47: 1H NMR of FluoHc in CD3OD.. 51
Figure 48: 1H NMR of tBuFluoNH2a in CDCl3.. 52
Figure 49: 13C NMR of tBuFluoNH2a in CDCl3.. 53
Figure 50: 1H NMR of FluoNH2c in CD3OD.. 54
Figure 51: (-)ESI-HRMS analysis of N-Boc-5-aminonaphthalene-1-sulfonic acid.. 55
Figure 52: (+)ESI-HRMS of N-phenylborono-5-aminonaphthalene-1-sulfonamide.. 56
Figure 53: (+)ESI-HRMS of N-benzyl-5-aminonaphthalene-1-sulfonamide.. 57
Figure 54: (+)ESI-HRMS of N-benzylidene-5-aminonaphthalene-1-sulfonamide.. 58
Figure 55: (+)ESI-HRMS of N-phenylborono-5-aminonaphthalene-1-sulfonic acid. 59
Figure 56: (+)ESI-HRMS of N-phenylborono-5-amino-1-naphthol. ... 60
Figure 57: (+)ESI-HRMS of N-phenylborono-5-amino-1-naphthol-3-sulfonic acid. 61
Figure 58: (+)ESI-HRMS of FluoHa. .. 62
Figure 59: (+)ESI-HRMS of FluoHc. ... 63
Figure 60: (+)ESI-HRMS of FluoNH2a. .. 64
Figure 61: (-)ESI-HRMS of FluoHc. ... 65
Figure 62: (-)ESI-MS N-Boc-5-aminonaphthalene-1-sulfonyl chloride. 66
Figure 64: (-)ESI-MS of 5-aminonaphthalene-1-sulfonamide. ... 68
Figure 65: (+)ESI-MS of monoaminofluorene. .. 69
Figure 66: (+)ESI-MS of diaminofluorene. ... 70
Figure 67: (-)ESI-MS of dinitrofluorene. .. 71
Figure 1: Normalized absorbance (black) and fluorescence (red) spectra of 1.
Figure 2: Normalized absorbance (black) and fluorescence (red) spectra of 2.
Figure 3: Normalized absorbance (black) and fluorescence (red) spectra of 3.
Figure 4: Normalized absorbance (black) and fluorescence (red) spectra of 4.
Figure 5: Normalized absorbance (black) and fluorescence (red) spectra of 5.
Figure 6: Normalized absorbance (black) and fluorescence (red) spectra of 6.
Figure 7: Normalized absorbance (black) and fluorescence (red) spectra of 11.
Figure 8: Normalized absorbance (black) and fluorescence (red) spectra of 12.
Figure 9: Normalized absorbance (black) and fluorescence (red) spectra of 13.
Figure 10: Normalized absorbance (black) and fluorescence (red) spectra of 14.
Figure 11: Fluorescence spectra of 21 with increasing concentrations of 10 in anhydrous acetonitrile. Inset: Stern-Volmer plot of Φ_0/Φ vs. [10] including linear fit and basic statistics showing diffusion limited fluorescence quenching of 21 with 10.
Figure 12: Fluorescence spectra of 11 with increasing concentrations of 10 in anhydrous acetonitrile. Inset: Stern-Volmer plot of Φ_0/Φ vs. [10] including linear fit and basic statistics showing the diffusion limited relationship between imine concentration and fluorescence quenching.
Figure 13: Fluorescence spectra of 11 with increasing concentrations of phenylboronic acid in anhydrous acetonitrile. Inset: Stern-Volmer plot of Φ_0/Φ vs. [phenylboronic acid] including linear fit and basic statistics showing the diffusion limited relationship between phenylboronic acid concentration and fluorescence quenching.
Figure 14: Fluorescence spectra of 12 with increasing concentrations of phenylboronic acid in pH 7.4 PBS. Inset: Stern-Volmer plot of Φ_0/Φ vs. [phenylboronic acid] including linear fit and basic statistics showing the lack of fluorescence quenching of 12 with phenylboronic acid.
Figure 15: Fluorescence spectra of 13 with increasing concentrations of 10 in anhydrous acetonitrile. Inset: Stern-Volmer plot of Φ_0/Φ vs. [10] including linear fit and basic statistics showing the lack of fluorescence quenching of 13 with 10.
Figure 16: Fluorescence spectra of 14 with increasing concentrations of phenylboronic acid in pH 7.4 PBS. Inset: Stern-Volmer plot of Φ_0/Φ vs. [phenylboronic acid] including linear fit and basic statistics showing the lack of fluorescence quenching of 14 with phenylboronic acid.
Figure 17: Fluorescence spectra of 20 with increasing concentrations of 10 in anhydrous acetonitrile. Inset: Stern-Volmer plot of Φ_0/Φ vs. [10] including linear fit and basic statistics showing diffusion limited fluorescence quenching of 20 with 10.
Figure 18: Fluorescence spectra of 1 in pH 7.4 PBS with added fructose demonstrating the fluorescence revival of 1 upon saccharide addition. Inset: Plot of [1:fructose] vs. [fructose] with a one-site binding fit overlayed and basic statistics used to determine the binding constant of 1 with fructose.
Figure 19: Fluorescence spectra of 5 in pH 7.4 PBS with added fructose demonstrating the fluorescence revival of 5 upon saccharide addition. Inset: Plot of [5:fructose] vs. [fructose] with a one-site binding fit overlayed and basic statistics used to determine the binding constant of 5 with fructose.
Figure 20: Fluorescence spectra of 6 in pH 7.4 PBS with added fructose demonstrating the fluorescence revival of 6 upon saccharide addition. Inset: Plot of [6:fructose] vs. [fructose] with a two-site binding fit overlayed and basic statistics used to determine the binding constant of 6 with fructose.
Figure 21: Fluorescence pH titrations of 1 without saccharide (■), with 100 mM glucose (■) and with 50 mM fructose (■) (~saturation) demonstrating the reduction of pKa of the boronic acid by formation of the boronic ester.
Figure 22: Fluorescence pH titrations of 1 without saccharide (■), with 10 mM fructose (■) and with 100 mM fructose (■) (~saturation) demonstrating the reduction of pKa of the boronic acid by formation of the boronic ester.
Figure 23: Fluorescence pH titrations of I without saccharide (■), with 10 mM fructose (■) and with 100 mM fructose (■) (~saturation) demonstrating the reduction of pKa of the boronic acid by formation of the boronic ester.
Figure 24: Cyclic voltammogram of the cathodic process of phenylboronic acid in anhydrous dimethylformamide.
Figure 25: Cyclic voltammogram of the anodic process of 9 in anhydrous dimethylformamide.
Figure 26: Cyclic voltammogram of the cathodic process of 10 in anhydrous dimethylformamide.
Figure 27: Cyclic voltammogram of the anodic process of 11 in anhydrous dimethylformamide.
Figure 28: Cyclic voltammogram of the anodic process of 12 in anhydrous dimethylformamide.
Figure 29: Cyclic voltammogram of the anodic process of 13 in anhydrous dimethylformamide.
Figure 30: Cyclic voltammogram of the anodic process of 20 in anhydrous dimethylformamide.
Figure 31: Cyclic voltammogram of the anodic process of 21 in anhydrous dimethylformamide.
Figure 32: 1H NMR of N-Boc-5-aminonaphthalene-1-sulfonic acid in CDCl$_3$.
Figure 33: 13C NMR of N-Boc-5-aminonaphthalene-1-sulfonic acid in CDCl$_3$.
Figure 34: 1H NMR of N-Boc-5-aminonaphthalene-1-sulfonyl chloride in CDCl$_3$.
Figure 35: 13C NMR of N-Boc-5-aminonaphthalene-1-sulfonyl chloride in CDCl$_3$.
Figure 36: 1H NMR of N-Boc-5-aminonaphthalene-1-tert-butylsulfonamide in CDCl$_3$.
Figure 37: 13C NMR of N-Boc-5-aminonaphthalene-1-tert-butylsulfonamide in CDCl$_3$.
Figure 38: 1H NMR of 5-aminonaphthalene-1-sulfonamide in 5% D_2O in CD$_3$CN.
Figure 39: 1H NMR of N-phenylborono-5-aminonaphthalene-1-sulfonamide in CD$_3$OD.
Figure 40: 1H NMR of N-benzyl-5-aminonaphthalene-1-sulfonamide in D$_6$-DMSO.
Figure 41: 1H-NMR of N-benzylidine-5-aminonaphthalene-1-sulfonamide in D$_6$-DMSO.
Figure 42: 1H NMR of N-phenylborono-5-aminonaphthalene-1-sulfonic acid in CD$_3$OD+Et$_3$N.
Figure 43: 1H NMR of N-phenylborono-5-amino-1-naphthol in CD$_3$OD.
Figure 44: 1H NMR of N-phenylborono-5-amino-1-naphthol-3-sulfonic acid in CD$_3$OD+Et$_3$N.
Figure 45: 1H NMR of 'BuFluoHa in CDCl$_3$.
Figure 46: 13C NMR of tBuFluoHa in CDCl$_3$.
Figure 47: 1H NMR of FluoHe in CD$_3$OD.
Figure 48: 1H NMR of tBuFluoNH$_2$a in CDCl$_3$.
Figure 49: 13C NMR of t^3BuFluNH$_2$a in CDCl$_3$.
Figure 50: 1H NMR of FluoNH$_2$c in CD$_3$OD.
Figure 51: (-)ESI-HRMS analysis of N-Boc-5-aminonaphthalene-1-sulfonic acid.
Figure 52: (+)ESI-HRMS of N-phenylborono-5-aminonaphthalene-1-sulfonamide.
Figure 53: (+)ESI-HRMS of N-benzyl-5-aminonaphthalene-1-sulfonamide.
Figure 54: (+)ESI-HRMS of N-benzylidine-5-aminonaphthalene-1-sulfonamide.
Figure 55: (+)ESI-HRMS of N-phenylborono-5-aminonaphthalene-1-sulfonic acid.
Figure 56: (+)ESI-HRMS of N-phenylborono-5-amino-1-naphthol.
Figure 57: (+)ESI-HRMS of N-phenylborono-5-amino-1-naphthol-3-sulfonic acid.
Figure 58: (+)ESI-HRMS of FluoHa.
Figure 59: (+)ESI-HRMS of FluoHc.
Figure 60: (+)ESI-HRMS of FluoNH2a.
Figure 61: (-)ESI-HRMS of FluoHc.
Figure 62: (-)ESI-MS N-Boc-5-aminonaphthalene-1-sulfonyl chloride.
Figure 63: (-)ESI-MS of N-Boc-5-aminonaphthalene-1-tert-butylsulfonamide.
Figure 64: (-)ESI-MS of 5-aminonaphthalene-1-sulfonamide.
Figure 65: (+)ESI-MS of monoaminofluorene.
Figure 66: (+)ESI-MS of diaminofluorene.
Figure 67: (-)ESI-MS of dinitrofluorene.