Supplementary Material for:

Chemoenzymatic Syntheses of Some Analogues of the Tricarbocyclic Core of the Anti-bacterial Agent Platencin and the Biological Evaluation of Certain of Their N-Arylpropionamide Derivatives

Rehmani N. Muhammad,a Ee Ling Chang,a Alistair G. Draffan,b Anthony C. Willis,a Paul D. Carra and Martin G. Banwella,\,*

aResearch School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601

bBiota Scientific Management Pty Ltd, Melbourne, VIC 3168

*Corresponding author. Email: Martin.Banwell@anu.edu.au
CONTENTS PAGE

Figure S1: Anisotropic Displacement Ellipsoid Plot from the Single-crystal X-ray Analysis of the Admixture of Compounds Compound 15 and 32 S3

Figure S2: Anisotropic Displacement Ellipsoid Plot from the Single-crystal X-ray Analysis of Compound 28 S4

Figure S3: Anisotropic Displacement Ellipsoid Plot from the Single-crystal X-ray Analysis of Compound 34 S5

Figure S4: Anisotropic Displacement Ellipsoid Plot from the Single-crystal X-ray Analysis of Compound 35 S6

Figure S5: Anisotropic Displacement Ellipsoid Plot from the Single-crystal X-ray Analysis of Compound 37 S7

1H and/or 13C NMR spectra of compounds 14-20, 25-40, 43-59, 61 and 64 S8
Figure S1: Structures of compounds 15 and 32 (CCDC 1832710). Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.
Figure S2: Structure of compound 28 (CCDC 1827734). Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.
Figure S3: Structure of compound 34 (CCDC 1827735) and associated water molecules. Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.
Figure S4: Structure of compound 35 (CCDC 1827736). Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.
Figure S5: Structure of compound 37 (CCDC 1827737). Anisotropic displacement ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.
400 MHz 1H NMR Spectrum of Compound 16
(recorded in CDCl$_3$)
100 MHz 13C NMR Spectrum of Compound 16
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 17
(recorded in CDCl$_3$)

OTBDMS

CH$_3$Cl$_2$

CHCl$_3$

S10
101 MHz 13C NMR Spectrum of Compound 17
(recorded in CDCl$_3$)

OTBDMS

17

CDCl$_3$
400 MHz 1H NMR Spectrum of Compound 18
(recorded in CDCl$_3$)

OTBDMS

18

CHCl$_3$
101 MHz 13C NMR Spectrum of Compound 18
(recorded in CDCl$_3$)

OTBDMS

I

18

CDCl$_3$
400 MHz 1H NMR Spectrum of Compound 19
(recorded in CDCl$_3$)

* = impurity
101 MHz 13C NMR Spectrum of Compound 19
(recorded in CDCl$_3$)

19
101 MHz 13C NMR Spectrum of Compound 20
(recorded in CDCl$_3$)

* = impurity
400 MHz 1H NMR Spectrum of Compound 25
(recording in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 25
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 26
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 26
(recorded in CDCl$_3$)

![NMR Spectrum of Compound 26](image)
400 MHz 1H NMR Spectrum of Compound 27
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 27 (recorded in CDCl$_2$)

![NMR Spectrum Image]

CDCl$_3$
400 MHz 1H NMR Spectrum of Compound 28
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 28
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 29
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 29
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 30
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 30
(recorded in CDCl$_3$)
800 MHz 1H NMR Spectrum of Compound 14
(recording in CDCl$_3$)
201 MHz 13C NMR Spectrum of Compound 14
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 31
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 31
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Mixture of Compounds 15 and 32
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Mixture of Compounds 15 and 32 (recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 33
(recoded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 33
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 34
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 34
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 35
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 35
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 37
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 37
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 38
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 38
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 39
(recorded in CDCl$_3$)

[Chemical Structure Image]

[NMR Spectrum Image]
101 MHz 13C NMR Spectrum of Compound 39
(recorded in CDCl$_3$)
400 MHz ^1H NMR Spectrum of Compound 40
(recorded in CDCl$_3$)

![NMR Spectrum](image.png)
101 MHz 3C NMR Spectrum of Compound 40
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 43
(recorded in CDCl$_3$)

CHCl$_3$
101 MHz 13C NMR Spectrum of Compound 43
(recorded in CDCl$_3$)

CDCl_3
400 MHz 1H NMR Spectrum of Compound 44
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 44
(recorder in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 45
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 45
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 46
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 46
(recorded in CDCl$_3$)

![NMR spectrum diagram](image-url)
400 MHz 1H NMR Spectrum of Compound 49
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 49
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 50
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 50
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 51
(recording in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 51
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 52
(recording in CDCl$_3$)

MeO-\hspace{1cm}O
\hspace{1cm}O
\hspace{1cm}H
\hspace{1cm}OH

52

CHCl$_3$
101 MHz 13C NMR Spectrum of Compound 52
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 53
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 53
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 54
(recoded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 54
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 55
(recorded in CDCl$_3$)

[Chemical structure image]

CHCl$_3$
101 MHz 13C NMR Spectrum of Compound 55
(recorded in CDCl$_3$)

![Chemical Structure of Compound 55](image)
400 MHz 1H NMR Spectrum of Compound 56
(recorded in CDCl$_3$)

\[\text{Structure of Compound 56} \]

\[\text{CHCl}_3 \]
101 MHz 13C NMR Spectrum of Compound 56
(recorded in CDCl$_3$)

![NMR Spectrum]
400 MHz 1H NMR Spectrum of Compound 57
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 57
(recorded in CDCl$_3$)
^{1}H NMR Spectrum of Compound 58
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 58 (recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 59
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 59
(recorded in CDCl$_3$)
400 MHz 1H NMR Spectrum of Compound 61
(recorded in CDCl$_3$)
101 MHz 13C NMR Spectrum of Compound 61
(recorded in CDCl$_3$)

61

CDCl$_3$
800 MHz 1H NMR Spectrum of Compound 64
(recorded in CDCl$_3$)
201 MHz 13C NMR Spectrum of Compound 64
(recorded in CDCl₃)