10.1071/CH18160_AC

©CSIRO 2018

Australian Journal of Chemistry 2018, 71(7), 504-510

Supplementary Material

Facile Surfactant-Free Synthesis of Composition-Tunable Bimetallic PtCu Alloy Nanosponges for Direct Methanol Fuel Cell Applications

Yanna Hu,^A Taiyang Liu,^A Chaozhong Li,^{A,B} and Qiang Yuan^{A,B,C} ^ACollege of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou 550025, China. ^BDepartment of Chemistry, Tsinghua University, Beijing 100084, China. ^CCorresponding author. Email: qyuan@gzu.edu.cn

Fig. S1 TEM images of the as-prepared nanosponge PtCu alloy nanosponges (a; Pt₃Cu), (b; Pt₂Cu), (c; PtCu), (d; PtCu₂), (e; PtCu₃) and pure Pt nanosponges (f).

Fig. S2 HRTEM images of as-prepared PtCu₂ alloy nanosponges.

Fig. S3 TEM images of the samples after 3600 s i-t test. (a; Pt₃Cu), (b; Pt₂Cu), (c; PtCu), (d; PtCu₂), (e; PtCu₃) and pure Pt nanosponges (f).

Fig. S4 The cyclic voltammetric curves (CVs) of Commercial PtRu/C (Pt: 20 wt%, Ru: 10 wt%) in 0.1 M H₂SO₄ solution (a), Commercial PtRu/C and PtCu₂ nanosponge in 0.1 M H₂SO₄ + 0.5 M methanol solution (b, specific activity; c, mass activity) with a scan rate of 50 mV·s⁻¹ at room temperature.(d) Current–time (i-t) curves of as-prepared PtCu₂ alloy nanosponge and commercial PtRu/C recorded at 0.6 V for 3600 s in 0.1 M H₂SO₄ + 0.5 M methanol solution. (The ECSA of PtRu/C was 52.5 m²/g.)