10.1071/CH18347_AC

©CSIRO 2019

Australian Journal of Chemistry 2019, 72(3), 184-193

Supplementary Material

In silico Analysis of FtsZ Crystal Structures Towards a New Target for Antibiotics

Kennardy D. Kusuma¹, Renate Griffith², Elizabeth J. Harry¹, Amy L. Bottomley¹, Alison T. Ung^{3*}

¹The ithree Institute, University of Technology Sydney, Sydney, New South Wales, Australia

²Department of Pharmacology, School of Medical Sciences, UNSW Sydney, Sydney, NSW 2052, Australia

³School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia

*Correspondence to Alison Ung; School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia. Email: <u>Alison.Ung@uts.edu.au</u>

Helicobacter pylori	RAEEGLKELEQSSDSILVIPNDKILLT	MKKNAS	TTECYREVDDVLVRAVSGISTIITKPG	222
Rickettsia typhi	TADKGLIELQQFVDTLIVIPNQNLFRI	ANEQTT	FADAFKMADDVLHAGVRGVTDLMIMPG	208
Acinetobacter baumannii	SAERGIEALEAHVDSLIIIPNQRLLSV	YG-DIS	1KDAYKKADDVLLNAVRSIFDLVVNRG	210
Neisseria meningitidis	VAQAGLEQLKEHVDSLIIIPNDKLMTA	LGEDVT	IREAFRAADNVLRDAVAGISEVVTCPS	207
Haemophilus influenzae	FAELGIKDLSQYVDSMIIIPNQQIQKV	LPKNAK	LIDAFAAANDVLRNSVMGISDMITSPG	229
Pseudomonas aeruginosa	IADEGIRALAESVDSLITIPNEKLLTI	LGKDAS	LLAAFAKADDVLAGAVRGISDIIKRPG	205
Vibrio cholerae	FAEQGIEELSKHVDSLITIPNEKLLKV	LGRGIT	LLEAFASANNVLKNAVQGIAELITRPG	205
Escherichia coli	FAEQGITELSKHVDSLITIPNDKLLKV	LGRGIS	LLDAFGAANDVLKGAVQGIAELITRPG	204
Shigella flexneri	FAEQGITELSKHVDSLITIPNDKLLKV	LGRGIS	LLDAFGAANDVLKGAVQGIAELITRPG	204
Salmonella enterica	FAEQGITELSKHVDSLITIPNDKLLKV	LGRGIS	LLDAFGAANDVLKGAVQGIAELITRPG	204
Yersinia pestis	FAEQGIAELSKHVDSLITIPNDKLLKV	LGRGIS	LLDAFGAANDVLKGAVQGIAELITRPG	204
Campylobacter jejuni	LAESGLLELKKESDSILVIQNEKLLSI	IDKKAG	IKDAFRLVDDILARAVKGMVSILLDNG	208
Thermotoga maritima	KAIEGLKKLRKHVDTLIKISNNKLMEE	LPRDVK	IKDAFLKADETLHQGVKGISELITKRG	215
Leptospira interrogans	FARKGIEQLRSHVDTLILINNDSIFRV	VDKNTP	IDLAFQVIDDILLNAVRGISDIINNPG	206
Mycobacterium tuberculosis	QAENGIAALRESCDTLIVIPNDRLLQM	GDAAVSI	MDAFRSADEVLLNGVQGITDLITTPG	202
Streptococcus pneumoniae	FAVEGINQLREHVDTLLIISNNNLLEI	VDKKTPI	LLEALSEADNVLRQGVQGITDLITNPG	206
Clostridium botulinum	HAEMGINTLKERVDTLVTIPNERLLSI	VDKKTSI	MDSFKLADDVLRQGVQGISDLITIPG	205
Staphylococcus aureus	QAAAGVEAMKAAVDTLIVIPNDRLLDI	VDKSTP	MEAFKEADNVLRQGVQGISDLIAVSG	205
Listeria monocytogenes	QALTGTEAMKEAVDTLIVIPNDRLLQI	VDKNTP	1LEAFREADNVLRQGVQGISDLIAVPG	205
Bacillus anthracis	QAASGIAAFKENVDTLIVIPNDRLLEI	VDKNTP	ILEAFREADNVLRQGVQGISDLIATPG	205
Bacillus subtilis	QAAGGISAMKEAVDTLIVIPNDRILEI	VDKNTP	ILEAFREADNVLRQGVQGISDLIATPG	205

Figure S1: Amino acid sequence alignment of the T6-loop from multiple bacterial species using Clustal Omega. The T6-loop region (red box) consensus sequence was seen to be conserved within the Gram-negative γ -proteobacteria (pink) and Gram-positive firmicutes (cyan). The Gram-negative *Leptospira interrogans* has the same consensus sequence as the firmicutes. DS 4.5 identified the T6-loop as a possible binding site in all analysed FtsZ structures except in *B. subtilis* and *P. aeruginosa* FtsZ, suggesting the potential of this site as a target for broad-spectrum antibiotics.

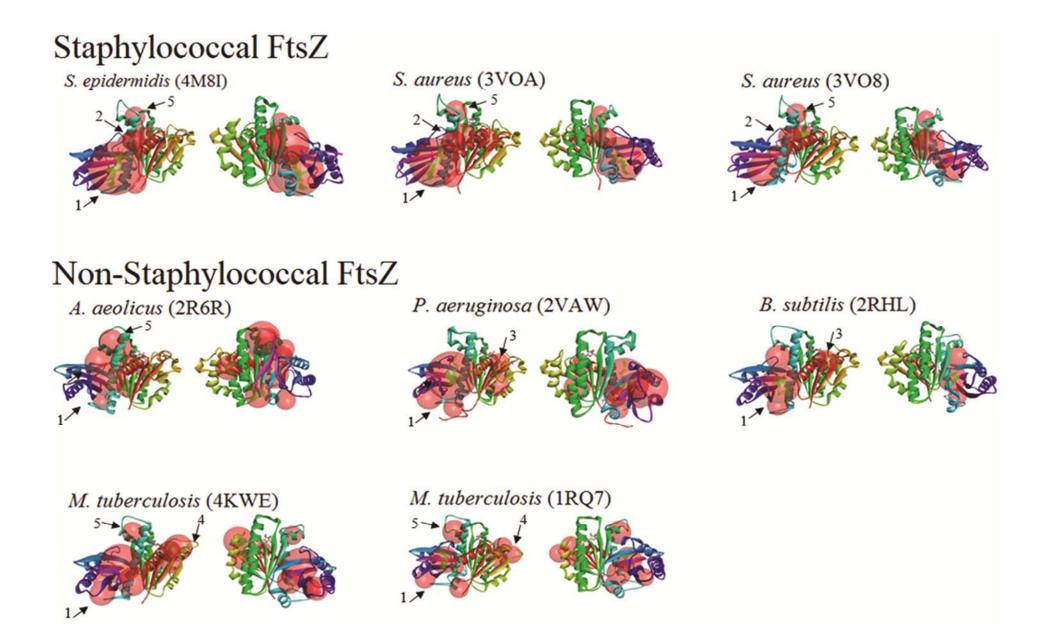


Figure S2: Comparison of the accessible binding sites of various GDP-bound FtsZ structures. The available binding sites as identified by Discovery Studio 4.5 are shown as red spheres. The locations of the spheres cover similar areas of the protein, but their sizes differ between the different FtsZ structures, especially in the area of the interdomain cleft (arrow 1). GDP was kept in the NBD; hence no sphere is shown in its binding pocket. See text for explanation of arrows 2-6.