10.1071/CH18375_AC

©CSIRO 2019

Australian Journal of Chemistry 2019, 72(1 & 2), 106-111

SUPPLEMENTARY MATERIAL

The microheterogeneity in ionic liquid mixtures: hydrogen bonding, dispersed ions and dispersed ion clusters

Andrea Mezzetta, Maria J. Rodriguez Douton, Lorenzo Guazzelli, Christian Silvio Pomelli, Cinzia Chiappe*

Dipartimento di Farmacia, Università di Pisa, via Bonanno 33, 56126 Pisa *Email: cinzia.chiappe@unipi.it

Table of contents

¹H-NMR table of mixtures pages **S2-S3**

Additivity parameters pages S4

Thermal gravimetric analysis (TGA) of mixtures page **S4-S5**

¹H-NMR spectra of neat ionic liquids.

Figure S1.¹H-NMR of $[C_4C_1IM]CI$.

Figure S2.¹H-NMR of [C₄C₁IM]Br.

Figure S3.¹H-NMR of [C₈C₁IM]Cl.

Figure S4.¹H-NMR of [C₄C₁IM]Tf₂N.

Figure S5.¹H-NMR of [C₄C₁IM]PF₆.

Figure S6.1H-NMR of [C₈C₁IM] Tf₂N.

¹H-NMR table of mixtures

Хсı	H ² ppm	H⁴ ppm	H⁵ ppm		
0	8.001	6.909	6.834		
0.0127	8.044	6.921	6.846		
0.0221	8.073	6.931	6.847		
0.0736	8.242	6.986	6.909		
0.104	8.345	7.031	6.943		
0.146	8.463	7.068	6.985		
0.227	8.697	7.158	7.071		
0.377	9.018	7.314	7.207		
0.509	9.288	7.469	7.371		
0.705	9.576	7.712	7.597		
0.847	9.721	7.867	7.751		
0.955	9.808	7.858	7.858		
1	9.847	7.987 7.987			

 $\label{eq:table_sigma} \textbf{Table S1}: \, {}^1\!H \; NMR \; chemical \; of \; [C_4C_1IM][Tf_2N]_{1\text{-}x} \; CI_x \; mixtures.$

 $\label{eq:constraint} \textbf{Table S2}: \, {}^1H \; NMR \; chemical \; of \; [C_4C_1IM][Tf_2N]_{1\text{-}x} \; Br_x \; mixtures.$

XBr	H ² ppm	H⁴ ppm	H⁵ ppm		
0	8.001	6.907	6.829		
0.0107	8.024	6.918	6.841		
0.0195	8.046	6.932	6.854		
0.0619	8.143	6.974	6.881		
0.0942	8.224	6.997	6.918		
0.133	8.303	7.028	6.941		
0.193	8.416	7.092	6.998		
0.321	8.613	7.172	7.073		
0.452	8.800	7.264	7.174		
0.658	8.998	7.389	7.296		
0.818	9.110	7.483	7.391		
0.945	9.177	7.541	7.442		
1	9.216	7.557	7.451		

Хсı	H ² ppm	H⁴ ppm	H⁵ ppm		
0.0000	7.727	6.726	6.697		
0.0094	7.760	6.737	6.704		
0.0210	7.796	6.746	6.709		
0.0550	7.899	6.778	6.749		
0.0965	8.022	6.821	6.784		
0.134	8.135	6.863	6.818		
0.183	8.281	6.908	6.872		
0.332	8.644	7.071	7.008		
0.455	8.943	7.186	7.118		
0.659	9.337	7.517	7.407		
0.815	9.567	7.714	7.601		
0.945	9.754	7.891	7.784		
1	9.847	7.987	7.987		

Table S3: ¹H NMR chemical of $[C_4C_1IM][PF_6]_{1-x}CI_x$ mixtures.

Table S4: ¹H NMR chemical of $[C_8C_1IM][Tf_2N]_{1-x}Cl_x$ mixtures

χсι	H ² ppm	H⁴ ppm	H⁵ ppm		
1	10.016	8.061	8.051		
0.947	9.924	7.991	7.984		
0.827	9.816	7.843	7.8209		
0.654	9.581	7.662	7.595		
0.470	9.392	7.505	7.431		
0.344	9.113	7.337	7.254		
0.191	8.714	7.171	7.097		
0	8.087	6.954	6.873		

Additivity parameters

C ₄ C ₁ IM PF ₆ ->Cl			C	8 <mark>8C₁IM Tf₂N-</mark>	>Cl	C₄C₁IM Tf₂N -> Br		$C_4C_1IM Tf_2N \rightarrow CI$			
χ	725-925	2800- 3200	χ	725-925	2800- 3200	χ	725-925	2800- 3200	χ	725-925	2800-3200
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.13	0.07	0.05	0.19	0.04	0.35	0.19	0.11	0.32	0.15	0.08	0.32
0.18	0.09	0.02	0.34	0.02	0.10	0.32	0.14	0.20	0.23	0.10	0.30
0.33	0.09	0.02	0.47	0.02	0.16	0.45	0.18	0.17	0.38	0.15	0.22
0.46	0.14	0.04	0.65	0.03	0.14	0.66	0.23	0.19	0.51	0.18	0.19
0.66	0.13	0.03	0.83	0.04	0.24	0.82	0.29	0.26	0.70	0.25	0.31
0.82	0.10	0.03	0.95	0.02	0.20	0.95	0.33	0.12	0.85	0.29	0.39
1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	0.96	0.31	0.14

Table S5. Additivity parameters of mixtures

Thermal gravimetric analysis (TGA) of mixtures

 $\label{eq:Figure S2: T_{peak} of mixtures of upper: [C_4C_1IM] [Tf_2N]_{1-x} Cl_{x;} middle: [C_4C_1IM] [Tf_2N]_{1-x} Br_{x,;} lower: \\ [C_8C_1IM] [Tf_2N]_{1-x} Cl_{x}.$

