©CSIRO 2019

Australian Journal of Chemistry 2019, 72(5), 369-374

Supplementary Material

Cyano-functionalized diarylethene derivatives with aggregation induced emission enhancement and piezofluorochromic behaviors

Ying Liu, ${ }^{\text {A,B }}$ Yuqi Cao, ${ }^{\mathrm{A}, \mathrm{B}}$ Xue Li, ${ }^{\mathrm{A}, \mathrm{B}}$ Yang Li $* \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ and Bowei Wang * A,B,C
A School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China 300350
${ }^{\text {B }}$ Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), P. R. China 300350
${ }^{\text {C Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, P. R. China } 300350 ~}$
*Corresponding author. E-mail: liyang777@tju.edu.cn; bwwang@tju.edu.cn

Contents:

Experiment section

Supporting data

Fig. S1-S4 $\quad{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}), ${ }^{13} \mathrm{C}$ NMR (100 MHz ,DMSO- d_{6}), HRMS and IR
Fig. S5
UV absorption spectra of PIA-n in DCM.
Fig. S6 Optimization geometry and calculated spatial electron distributions of HOMOs and LUMOs of PIA-4, PIA-8, PIA-12, PIA-16

Fig. S7 TGA curves of PIA-4, PIA-8, PIA-12, PIA-16

Table. S1 Crystal data and structure refinement for PIA-4

Experiment section

General conditions

All the reagents were obtained commercially and used without further purification. ${ }^{1} \mathrm{H}$ NMR spectra and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer using DMSO-d ${ }_{6}$ as solvent. High resolution mass spectra were measured on a Bruker Paltonicsmicro TOF-QII instrument. IR spectra were acquired on Nicolet 380 FT-IR spectrometer. Photoluminescence spectra were recorded on Hitachi F-2500 spectrophotometer and photoluminescence spectra of solid state were measured by Horiba Jobin Yvon Fluorolog-3 spectrophotometer. Powder wide angle X-ray diffraction (PWXD) measurements were performed on a Miniflex 600 Powder X-ray diffractometer of Rigaku, operating at $40 \mathrm{~V}, 40 \mathrm{~A}, 4^{\circ} \mathrm{min}^{-1}$. Thermal gravimetric analysis (TGA) was conducted on TGA 128 instrument and differential scanning calorimetry (DSC) experiments were carried out on Perkin-Elmerat instrument, both of them were measured at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ in nitrogen atmosphere.

Supporting data

Fig. S1 (1) ${ }^{1} H$ NMR spectra of PIA-4

Fig. S1 (2) ${ }^{1} H$ NMR spectra of PIA-8

Fig. S1 (3) ${ }^{1} \mathrm{H}$ NMR spectra of PIA-12

Fig. S1 (4) ${ }^{1} H$ NMR spectra of PIA-16

Fig. S2 (1) ${ }^{13} \mathrm{C}$ NMR spectra of PIA-4

Fig. S2 (2) ${ }^{13} \mathrm{C}$ NMR spectra of PIA-8

Fig. S2 (3) ${ }^{13} \mathrm{C}$ NMR spectra of PIA-12

Fig. S2 (4) ${ }^{13} \mathrm{C}$ NMR spectra of PIA-16

Fig. S3 (1) HRMS spectra of PIA-4

Fig. S3 (2) HRMS spectra of PIA-8

Fig. S3 (3) HRMS spectra of PIA-12

Fig. S3 (4) HRMS spectra of PIA-16

Fig. S4 (1) IR spectra of PIA-4

Fig. S4 (2) IR spectra of PIA-8

Fig. S4 (3) IR spectra of PIA-12

Fig S4 (4) IR spectra of PIA-16

Fig. S5 UV absorption spectra of PIA-n in DCM.

Fig. S6 Optimization geometry and calculated spatial electron distri-butions of HOMOs and LUMOs of PIA-4, PIA-8, PIA-12,

Fig. S7 (1) TGA curves of PIA-4

Fig. S7 (2) TGA curves of PIA-8

Fig. S7 (3) TGA curves of PIA-12

Fig. S7 (4) TGA curves of PIA-1

Table. S1 Crystal data and structure refinement for PIA-4.

Empirical formula	$\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{~S}$
Formula weight	497.63
Temperature	113(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=13.131(3) \mathrm{A} & \text { alpha }=90 \mathrm{deg} . \\ \mathrm{b}=19.775(4) \mathrm{A} & \text { beta }=101.34(3) \mathrm{deg} . \\ \mathrm{c}=10.312(2) \mathrm{A} & \text { gamma }=90 \text { deg. } \end{array}$
Volume	2625.3(10) A^3
Z, Calculated density	4, $1.259 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.150 \mathrm{~mm}^{\wedge}-1$
$\mathrm{F}(000)$	1048
Crystal size	$0.200 \times 0.180 \times 0.120 \mathrm{~mm}$
Theta range for data collection	1.887 to 27.837 deg.
Limiting indices	$-17<=\mathrm{h}<=17,-25<=\mathrm{k}<=25,-13<=1<=13$
Reflections collected / unique	$31077 / 6230[\mathrm{R}(\mathrm{int})=0.0666]$
Completeness to theta $=25.242$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.8778
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	6230 / 0 / 336
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.070
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0644, \mathrm{wR} 2=0.1633$
R indices (all data)	$\mathrm{R} 1=0.0897, \mathrm{wR} 2=0.1828$
Extinction coefficient	$0.0095(17)$
Largest diff. peak and hole	0.295 and -0.268 e. ${ }^{\wedge}-3$
CCDC	1857378

