Supplementary Material

TiO$_2$ Films Functionalized with ABDA for Enhanced Photoelectrochemical Performance

Penggang Chen,A Lulu Zhang,A Bingwen Liu,B Peng Chen,A,C and Pengfei YanA,C

AKey Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.

BLaboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130021, China.

CCorresponding authors. Email: jehugu@gmail.com; yanpf@vip.sina.com
Figure S1 1H NMR spectrum of ABDA.

Figure S2 TG curve of ABDA in the range of 100-450 °C under N$_2$ atmosphere.
The thermogravimetric analysis (TG) indicated that ABDA was stable enough under N₂ atmosphere at approximately 200 °C. Therefore, we preferred to calcine the FTO glass for the preparation of ABDA/TiO₂ films at 150 °C in a tube furnace under N₂. The peak intensity of IR spectra of ABDA/TiO₂ was poor, which might be owing to the low content of ABDA and interference of TiO₂.

Figure S4 The chronoamperometry results under AM 1.5 for 12000 seconds.
Figure S5 Survey XPS spectrum of ABDA/TiO₂.

Figure S6 Survey XPS spectrum of ABDA.
Figure S7 Survey XPS spectrum of TiO$_2$.

![Survey XPS spectrum of TiO$_2$.](image-url)