10.1071/CH19197_AC

©CSIRO 2019

Australian Journal of Chemistry 2019, 72(11), 910-915

Supplementary Material

An Anionic Calcium Metal-Organic Framework Encapsulated Tb^{III} Ions as a Recyclable Luminescent Sensor for Cr^{III} and Fe^{III} ions

Min Chen^{A,C} and Wen-Ming Xu^B

- ^A Hubei University of Education, Hubei Key Laboratory of Purification and Application of Plant Anti-Cancer Active Ingredients, Wuhan, Hubei 430205, China.
- ^B Zhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou, Henan 450002, China.

^C Corresponding author. Email: chem_chenmin@163.com

Scheme S1 Schematic drawing of the ligand H_3TATB .

Ca-MOF						
Ca1–O14	2.269(4)	Ca1–O1	2.280(3)			
Ca1–O13	2.339(3)	Ca1 O9 ^{#2}	2.443(2)			
Ca2–O3	2.304(2)	Ca3–O6	2.292(2)			
Ca3–O7	2.299(2)	Ca3–O10 ^{#6}	2.324(2)			
Ca1–O12 ^{#3}	2.361(2)	Ca2–O8 ^{#3}	2.365(2)			
Ca2–O5 ^{#3}	2.449(2)	Ca1–O4 ^{#1}	2.472(3)			
Ca2–O11 ^{#5}	2.483(2)	Ca2–O10 ^{#4}	2.514(2)			
Ca2–O12 ^{#5}	2.553(2)	Ca1–O3 ^{#1}	2.618(3)			
Ca2–O6 ^{#3}	2.667(2)	Ca2–O9 ^{#4}	2.713(2)			
Ca2–O7 ^{#3}	3.004(3)					
O1–Ca1–O12 ^{#3}	91.72(10)	O1–Ca1–O9 ^{#2}	90.30(9)			
O1–Ca1–O13	85.67(12)	O1–Ca1–O3 ^{#1}	159.94(9)			
O1–Ca1–O4 ^{#1}	149.08(11)	O12 ^{#3} -Ca1-O3 ^{#1}	75.76(7)			
O12 ^{#3} -Ca1-O9 ^{#2}	71.45(7)	O12 ^{#3} -Ca1-O4 ^{#1}	114.15(11)			
O13–Ca1–O12 ^{#3}	84.30(10)	O13–Ca1–O4 ¹	80.67(12)			
O13–Ca1–O3 ^{#1}	108.15(11)	O14–Ca1–O3 ^{#1}	99.18(16)			
O14–Ca1–O1	86.18(18)	O14–Ca1–O9 ^{#2}	85.61(16)			
O14–Ca1–O4 ^{#1}	76.34(18)	O14–Ca1–O12 ^{#3}	156.96(16)			
O14–Ca1–O13	118.33(18)	O4 ^{#1} -Ca1-O3 ^{#1}	50.31(9)			
O9 ^{#2} -Ca1-O3 ^{#1}	71.01(7)	O9 ^{#2} -Ca1-O4 ^{#1}	113.15(9)			
O13–Ca1–O9 ^{#2}	155.29(10)	O3–Ca2–O8 ^{#3}	93.68(11)			
O3-Ca2-O11 ^{#5}	95.13(10)	O5 ^{#3} –Ca2–O10 ^{#4}	91.24(9)			
O3–Ca2–O7 ^{#3}	92.00(8)	O5 ^{#3} -Ca2-O9 ^{#4}	84.70(8)			
O3–Ca2–O10 ^{#4}	85.74(8)	O5 ^{#3} –Ca2–O11 ^{#5}	80.23(10)			
O8 ^{#3} -Ca2-O11 ^{#5}	83.71(9)	O3–Ca2–O12 ^{#5}	78.05(7)			
O8 ^{#3} -Ca2-O6 ^{#3}	80.11(9)	O3–Ca2–O9 ^{#4}	71.31(9)			
O5 ^{#3} Ca2–O12 ^{#5}	76.55(7)	O10 ^{#4} -Ca2-O7 ^{#3}	65.65(6)			

Table S1 A comparison of the selected bond lengths [Å] and angles [°] for Ca-MOF.^[a]

O10 ^{#4} -Ca2-O6 ^{#3}	70.48(6)	O6 ^{#3} -Ca2-O7 ^{#3}	62.83(6)
O12 ^{#5} -Ca2-O9 ^{#4}	64.31(6)	O5 ^{#3} -Ca2-O6 ^{#3}	50.37(6)
O11 ^{#5} -Ca2-O12 ^{#5}	51.62(7)	O8 ^{#3} -Ca2-O7 ^{#3}	46.49(8)
O10 ^{#4} -Ca2-O9 ^{#4}	49.39(6)	O11 ^{#5} -Ca2-O10 ^{#4}	164.10(7)
O12 ^{#5} -Ca2-O7 ^{#3}	170.04(7)	O3–Ca2–O5 ^{#3}	150.76(9)
O8 ^{#3} -Ca2-O9 ^{#4}	155.61(10)	O8 ^{#3} -Ca2-O12 ^{#5}	132.78(8)
O3–Ca2–O6 ^{#3}	150.55(7)	O12 ^{#5} -Ca2-O6 ^{#3}	126.84(6)
O11 ^{#5} -Ca2-O7 ^{#3}	130.07(7)	O8 ^{#3} -Ca2-O5 ^{#3}	114.24(11)
O11 ^{#5} -Ca2-O9 ^{#4}	115.92(7)	O5 ^{#3} -Ca2-O7 ^{#3}	113.19(7)
O10 ^{#4} -Ca2-O12 ^{#5}	113.46(6)	O8 ^{#3} -Ca2-O10 ^{#4}	112.11(8)
O11 ^{#5} -Ca2-O6 ^{#3}	112.54(9)	O9 ^{#4} -Ca2-O7 ^{#3}	113.17(6)
O6 ^{#3} -Ca2-O9 ^{#4}	103.32(7)	O6–Ca3–O7	80.63(9)
O6–Ca3–O10 ^{#8}	80.82(7)	O7 ^{#7} -Ca3-O10 ^{#8}	98.44(8)

[a] Symmetry codes: #1 = *x* − 1, *y* − 1, *z*; #2 = *x* − 1, *y*, *z* − 1; #3 = *x*, *y*, *z* − 1; #4 = *x*, *y* + 1, *z* − 1; #5 = *x* + 1, *y* + 1, *z* − 1; #6 = −*x* + 1, −*y* + 1, −*z* + 2; #7 = −*x* + 1, −*y* + 2, −*z* + 2; #8 = *x*, *y* + 1, *z*

D–H···A	$d(H\cdots A)$ (Å)	$d(D\cdots A)$ (Å)	$\angle D$ –H···A (°)	Symmetry codes
N9–H9A…O5	2.41	3.03	127	<i>x</i> , <i>y</i> – 1, <i>z</i>
N9–H9A…O9	2.55	3.18	129	
N9–H9A…O12	2.29	3.01	139	<i>x</i> + 1, <i>y</i> , <i>z</i>
N9–H9B…O2	1.79	2.65	162	<i>x</i> + 1, <i>y</i> , <i>z</i> + 1

Table S2 Hydrogen bond lengths [Å] and angles [°] for Ca-MOF.

(b)

Fig. S1 The coordination polyhedron of Ca^{II} ions in Ca-MOF. Symmetry codes: x - 1, y - 1, z for A; x - 1, y, z - 1 for B; x, y, z - 1 for C; x, y, z - 1 for D; x, y + 1, z - 1 for E; x + 1, y + 1, z - 1 for F; -x + 1, -y + 2, -z + 2 for G; -x + 1, -y + 1, -z + 2 for H; x, y + 1, z for I.

(b)

Fig. S2 View of the coordination modes of TATB ligands. Symmetry codes: A = x, y, z + 1; B = x + 1, y + 1, z; C = x - 1, y - 1, z + 1; D = x, y - 1, z; E = x, y - 1, z + 1; F = x + 1, y, z + 1.

Fig. S3 View of the pentanuclear SBU. The Ca1, Ca2, Ca3 ions are shown in pink, blue, and green, respectively.

(a)

(b)

Fig. S4 (a) View of the location of $[(CH_3)_2NH_2]^I$ cations in the 3-D framework. (b) View of the hydrogen-bonding interactions (orange dashed lines) between $[(CH_3)_2NH_2]^I$ cations and carboxylate groups.

Fig. S5 Power X-ray diffraction patterns of Ca-MOF and Tb^{III}@Ca-MOF after five recyclable experiments.

Fig. S6 TG curve of Ca-MOF.

Fig. S7 Excitation (black line) and emission (red line) spectra of Tb^{III}@Ca-MOF. The inset is the corresponding luminescence picture under UV-light irradiation of 254 nm.

(a)

Fig. S8 The relationship between the quenching efficiency and the amount of $Cr^{III}(a)$ or $Fe^{III}(b)$

ions.

Fig. S9 Stern-Volmer (SV) plot for Cr^{III} (a) or Fe^{III} (b) ions in the low concentration range, the red line corresponds to a fit to the linear relationship.

Fig. S10 Dependence of the quenching efficiency on the concentration of Cr^{III} (a) or Fe^{III} (b) ions in the low concentration range, the red line corresponds to a fit to the linear relationship.

(a)

(c)

Fig. S11 EDS analysis of Tb^{III}@Ca-MOF (a), Tb^{III}@Ca-MOF in Cr^{III} solution (b), and Tb^{III}@Ca-MOF in Fe^{III} solution (c).

Fig. S12 UV–Vis spectra of Cr^{III} and Fe^{III} in DMF and the excitation spectrum of Tb^{III}@Ca-MOF.