10.1071/CH19209_AC

©CSIRO 2019

Australian Journal of Chemistry 2019, 72(10), 805-810

Supplementary Material

Three manganese complexes of anionic N₄-donor Schiff-base macrocycles: monomeric Mn^{II} and Mn^{III} , and dimeric Mn^{IV}

Rajni K. Wilson,^A Sébastien Dhers,^A Stephen Sproules,^B Eric J. L. McInnes^C and Sally Brooker^{A D}

^A Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

^B WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.

^c School of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.

^D Corresponding author. Email: sbrooker@chemistry.otago.ac.nz

Identification code	RS184	F(000)	2376
Empirical formula	$C_{45}H_{59}N_{11}Mn_2O_{13}Cl_2$	Crystal Size	0.60 x 0.10 x 0.10 mm ³
Formula weight	1142.81 g mol ⁻¹	Theta range for data collection	2.18 to 26.41°
Temperature	90(2) K	Index ranges	$-12 \leq h \leq 11$
Wavelength	0.71073 Å		$-59 \le k \le 59$
Crystal system	Monoclinic		$-11 \le 1 \le 13$
Space group	$P2_{1}/n$	Reflections collected	43704
Unit cell dimensions	a = 9.747(3) Å	Independent reflections	10138 [$R_{int} = 0.0983$]
	b = 47.881(15) Å	Completeness to $\theta = 26.41^{\circ}$	99.6%
	c = 10.883(3) Å	Absorption correction	Semi-empirical from equivalents
	$\alpha = 90^{\circ}$	Max. and min. transmission	0.9339 and 0.6810
	$\beta = 102.771(19)^{\circ}$	Refinement method	Full-matrix least-squares on F ²
	$\gamma=90^{\circ}$	Data / restraints / parameters	10138 / 0 / 706
Volume	4953(3) Å ³	Goodness-of-fit on F^2	1.027
Ζ	4	Final R indices [I>2 σ (I)]	$\begin{array}{l} R_1 = 0.0599, wR_2 = \\ 0.1230 \end{array}$
Density (calculated)	1.533 Mg/m ³	R indices (all data)	$\begin{array}{l} R_1 = 0.1056, wR_2 = \\ 0.1428 \end{array}$
Absorption coefficient	0.694 mm ⁻¹	Largest diff. peak and hole	0.728 and -0.504 e.Å $^{\text{-3}}$

Table S1. Crystal data and structure refinement for $[Mn^{IV}_2(L^{Et})_2(O)_2](ClO_4) \bullet 3DMF$

Table S2. Cr	ystal data and	refinement for	$[Mn^{III}L^{P_1}]$	$(NCS)_{2}$] (two molecules in	the asyr	nmetric unit)
--------------	----------------	----------------	---------------------	-----------------	------------------	----------	---------------

			-
Identification code	RKW542	F(000)	2032
Empirical formula	$C_{22}H_{23}N_6MnS_2 \\$	Crystal Size	0.40 x 0.06 x 0.04 mm ³
Formula weight	490.52 g mol ⁻¹	Theta range for data collection	1.55 to 26.42°
Temperature	91(2) K	Index ranges	$-16 \le h \le 12$
Wavelength	0.71073 Å		$-16 \le k \le 16$
Crystal system	Monoclinic		$-33 \le 1 \le 32$
Space group	$P2_{1}/n$	Reflections collected	59916
Unit cell dimensions	a = 13.529(2) Å	Independent reflections	9558 [$R_{int} = 0.1684$]
	b = 13.263(2) Å	Completeness to $\theta = 26.42^{\circ}$	98.4%
	c = 26.707(5) Å	Absorption correction	Semi-empirical from equivalents
	$\alpha = 90^{\circ}$	Max. and min. transmission	0.9704 and 0.7517
	$\beta = 99.651(6)^{\circ}$	Refinement method	Full-matrix least- squares on F ²
	$\gamma = 90^{\circ}$	Data / restraints / parameters	9558 / 9 / 538
Volume	4724.2(14) Å ³	Goodness-of-fit on F ²	1.052
Ζ	8	Final R indices [I>2 σ (I)]	$R_1 = 0.1147, wR_2 = 0.3057$
Density (calculated)	1.379 Mg/m ³	R indices (all data)	$R_1 = 0.2310, wR_2 = 0.3759$
Absorption coefficient	0.757 mm ⁻¹	Largest diff. peak and hole	$1.395 \text{ and } -0.999 \text{ e.}\text{Å}^{-3}$

Figure S1. X-band EPR spectrum of $Mn^{II}L^{Et}(NCS)(H_2O)$ recorded in CH₂Cl₂/DMF at 293 K (experimental conditions: frequency, 9.8083 GHz; power, 2.0 mW; modulation, 0.3 mT). Experimental data are represented by the black line; simulation is depicted by the red trace: $g_{iso} = 2.0026$; $A_{iso} \{ {}^{55}Mn \} = 89 \times 10^{-4} \text{ cm}^{-1}$.

Figure S2. Temperature dependence of the magnetic moment, μ_{eff} , μ_B , of a powder sample of $[\text{Mn}^{\text{III}}\mathbf{L}^{\mathbf{Pr}}(\text{NCS})_2]$ (1 T external field). The open circles represent experimental data; solid line is a best fit, giving parameters g = 2.008; $D = -6.5 \text{ cm}^{-1}$; E/D = 0.03, for S = 2.

Figure S3. Plot of magnetic moment versus temperature for $[Mn^{IV}_2L^{Et}_2(O)_2](ClO_4)_2 \cdot 3DMF.$