SUPPLEMENTARY MATERIAL

Tuning Packing, Structural Flexibility and Porosity in 2D Metal-Organic Frameworks by Metal Node Choice

Witold M. Bloch,[†]* Christian J. Doonan,[†] and Christopher J. Sumby.[†]*

[†]Department of Chemistry and Centre for Advanced Nanomaterials, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia.

Email: witold.bloch@adelaide.edu.au; christopher.sumby@adelaide.edu.au

Contents

1.	Additional Structural Information for β -ML1 and ML1 (M = Co(II) or Ni(II))	2
2.	Unit Cell Parameters for the Solvent Exchanged Forms of NiL1	3
3.	Powder X-ray Diffraction	4
4.	Gas Adsorption	6

1. Additional Structural Information for β -ML1 and ML1 (M = Co(II) or Ni(II))

Figure S1. a) A view of the coordination sphere of the Co(II) and Ni(II) centres of (a) β -CoL1 and (b) β -NiL1 respectively. The hydrogen atoms of the water ligand could not be located in the difference map.

Figure S2. a) A view of the coordination sphere of the Co(II) centre of **CoL1** highlighting the perpendicular relationship between the metal centres of two separate 2-D layers; b) the zig-zag conformation of the Co(II) metal centres viewed along the *b* axis (identical for **NiL1**).

2. Unit Cell Parameters for the Solvent Exchanged Forms of NiL1

Sample	Treatment	a (Å)	b (Å)	c (Å)	$V(\text{\AA}^3)$
NiL1·xS	as- synthesised	11.2054(2)	20.1664(4)	13.3065(3)	3006.90(11)
NiL1·EtOH	ethanol exchanged	10.6799(2)	20.3654(3)	13.2980(3)	2892.32(9)
NiL1·MeOH	methanol exchanged	11.409(2)	20.322(4)	13.065(3)	3029.2(11)
NiL1·Tol	toluene exchanged	10.933(2)	20.875(4)	11.989(2)	2736.2(10)

Table S1. Unit cell parameters for the various solvent exchanged forms of NiL1.

3. Powder X-ray Diffraction

Figure S3. a) PXRD patterns of a) β-CoL1 simulated; b) β-CoL1 as-synthesised; c) β-NiL1 simulated; d)
β-NiL1 as-synthesised.

Figure S4. a) PXRD patterns of a) CoL1 simulated; b) CoL1 as-synthesised; c) NiL1 simulated; d) NiL1 as-synthesised.

Figure S5. a) PXRD patterns of a) **NiL1** as-synthesised; b) **NiL1**•*x***CH**₃**OH** heated to 100 °C; c) **CoL1** treated at 260 °C; d) **NiL1** treated at 260 °C.

4. Gas Adsorption

Figure S6. a) N_2 isotherm of NiL1-*ac* measured at 77 K. Filled and empty symbols represent the adsorption and desorption processes respectively.

Figure S7. a) 293 K CO_2 and N_2 isotherms of NiL1-*ac*. Filled and empty symbols represent the adsorption and desorption processes respectively.