10.1071/CH20074_AC

©CSIRO 2021

Australian Journal of Chemistry 2021, 74(2), 145-150

Supplementary Material

Chiral BINAPO Induced Circularly Polarized Luminescence in a Triple-Stranded Eu₂L₃(BINAPO)₂ Helicate

Shuang Bi,^A Yanyan Zhou,^A Yuan Yao,^A Zhenyu Cheng,^A Ting Gao,^{A,B} Pengfei Yan,^A and Hongfeng Li^{A,B}

^AKey Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China.

^BCorresponding authors. Email: gaotingmail@sina.cn; lihongfeng@hlju.edu.cn

Fig. S1. 400 MHz ¹H NMR spectrum of 4,4'bin-(acetyl)phenoxy-1,1'-biphenyl in CDCl₃.

Fig. S2. 101 MHz ¹³C NMR spectrum of 4,4'bin-(acetyl)phenoxy-1,1'-biphenyl in CDCl₃.

Fig. S3. ESI-TOF-MS of 4,4'bin-(acetyl)phenoxy-1,1'-biphenyl.

Fig. S4. 400 MHz ¹H NMR spectrum of L in CDCl₃.

Fig. S5. 101 MHz ¹³C NMR spectrum of L in CDCl₃.

Fig. S6. ESI-TOF-MS of L.

Fig. S7. ESI-TOF-MS of (Eu₂L₃)(S-BINAPO)₂.

Fig. S8. ESI-TOF-MS of (La₂L₃)(R-BINAPO)₂.

Fig. S9. ESI-TOF-MS of (La₂L₃)(S-BINAPO)₂.

Fig. S10. ESI-TOF-MS of (Gd₂L₃)(R-BINAPO)₂.

Fig. S11. ESI-TOF-MS of (Gd₂L₃)(S-BINAPO)₂.

Fig. S12. UV-Vis absorption spectra of (Eu₂L₃)(R-BINAPO)₂ (red line) (1.0×10⁻⁵ M), and L (black line) in CHCl₃/CH₃OH (75:2) (1.0×10⁻⁵ M).

Fig. S13. Excitation spectra of $(Eu_2L_3)(R$ -BINAPO)₂ (red line) and $(Eu_2L_3)(S$ -BINAPO)₂ (black line) recorded by monitoring the emission band of Eu^{3+} ions at 612 nm in CHCl₃ (1 × 10⁻⁵ M).

Fig. S14. Normalization absorption (black line) and excitation spectra (red line) of (Eu₂L₃)(R-BINAPO)₂ in CHCl₃.

Fig. S15. Luminescence decay curve of (Eu₂L₃)(R-BINAPO)₂ in CHCl₃ monitored at 612 nm.

Fig S16. Luminescence decay curve of (Eu₂L₃)(S-BINAPO)₂ in CHCl₃ monitored at 612 nm.

Fig. S17. Coordination polyhedra of (Eu₂L₃)(R-BINAPO)₂.

Fig. S18. Phosphorescence spectra of (Gd₂L₃)(R-BINAPO)₂ (red line) and (Gd₂L₃)(S-BINAPO)₂ (black line) in CHCl₃ at 77 K.