10.1071/CH20109_AC

©CSIRO 2021

Australian Journal of Chemistry 2021, 74(2), 111-124

Supplementary Material

Some Products from C=O Condensations of Quinacridones

Anthony S. R. Chesman^{A,B,C} and Andris J. Liepa^A

^ACSIRO Manufacturing, Jerry Price Laboratory, Clayton, Vic. 3168, Australia.

^B Melbourne Centre of Nanofabrication, Clayton, Vic. 3168, Australia.

^CCorresponding author. Email: <u>anthony.chesman@csiro.au</u>

Figure S1. ¹H NMR spectrum of **1b**.

Figure S2. ¹H NMR spectrum of Intermediate A. Peaks at 8.25, 3.24 and 3.11 ppm due to residual DMF.

Figure S3. ¹³C NMR spectrum of Intermediate A.

Figure S4. a) ¹H NMR spectrum of 1d.

Figure S5. ¹³C NMR spectrum of 1d.

Figure S6. ¹H NMR spectrum of **1f**. Peak at 5.35 ppm is residual DCM.

Figure S7. ¹³C NMR spectrum of 1f.

Figure S8. ¹H NMR spectrum of 2a.

Figure S9. ¹³C NMR spectrum of 2a.

Figure S10. ¹H NMR spectrum of 2b.

Figure S11. ¹³C NMR spectrum of 2b.

Figure S12. ¹H NMR spectrum of 2c.

Figure S13.¹³C NMR spectrum of 2c.

Figure S14. ¹H NMR spectrum of **2d**. Peaks at 2.03 and 4.10 ppm due to residual ethyl acetate, which also contributes to peak series at 1.2-1.95 ppm.

Figure S15. ¹³C NMR spectrum of 2d.

Figure S16. ¹H NMR spectrum of 3a.

Figure S17. ¹³C NMR spectrum of 3a.

Figure S18. ¹H NMR spectrum of 3b.

Figure S19. ¹³C NMR spectrum of 3b.

Figure S20. ¹H NMR spectrum of 3c.

Figure S21. ¹³C NMR spectrum of 3c.

Figure S22. ¹H NMR spectrum of 3d. Peak at 2.63 ppm due to DMSO contamination.

Figure S23. ¹³C NMR spectrum of 3d.

Figure S24. ¹H NMR spectrum of 3e.

Figure S25. ¹³C NMR spectrum of 3e.

Figure S26. a) ¹H NMR spectrum 4a.

Figure S27. ¹³C NMR spectrum 4a.

Figure S28. ¹H NMR spectrum of 4b.

Figure S29. ¹³C NMR spectrum of 4b.

Figure S30. ¹H NMR spectrum of 4c.

Figure S31. ¹³C NMR spectrum of 4c.

Figure S32. ¹H NMR spectrum of 5a.

Figure S33. ¹³C NMR spectrum of 5a.

Figure S34. ¹H NMR spectrum of 5b.

Figure S35. ¹³C NMR spectrum of 5b.

Figure S36. a) ¹H NMR spectrum of 5c.

Figure S37. ¹³C NMR spectrum of 5c.

Figure S38. ¹H NMR spectrum of 6a.

Figure S39. ¹³C NMR spectrum of 6a.

Figure S40. ¹H NMR spectrum of 6b.

Figure S41. ¹³C NMR spectrum of 6b.

Figure S42. ¹H NMR spectrum of 6c. Peak at 3.49 ppm due to residual methanol.

Figure S43. ¹³C NMR spectrum of 6c.

Figure S44. ¹H NMR spectrum of 6d.

Figure S45. ¹³C NMR spectrum of 6d.

Figure S46. ¹H NMR spectrum of 6e.

Figure S47. ¹³C NMR spectrum of 6e.