Supplementary Material

Continuous-Flow Photochemical Transformations of 1,4-Naphthoquinones and Phthalimides in a Concentrating Solar Trough Reactor

Madyan A. Yaseen,^A Saira Mumtaz,^A Richard L. Hunter,^A Daniel Wall,^A Mark J. Robertson,^A and Michael Oelgemöller^{A,B,C}

^ACollege of Science and Engineering, James Cook University, Townsville, Qld 4811,

Australia.

^BDepartment of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium.

^cCorresponding author. Email: michael.oelgemoeller@jcu.edu.au

Additional technical information on solar reactors

Length of glass tube	1.2 m
Outer diameter of glass tube	3 cm
Capillary tube material	Fluorinated ethylene propylene (FEP), Bohlender GmbH
External diameter	3.2 mm
Internal diameter	1.6 mm
Exposed length of tube	27 m (plus additional ~70 cm on each end covered by black heat shrink tubing)
Exposed volume of tube	54 mL
Pump	Ismatec piston pump, model ISM321C
Positioning to sun	manually
Concentrator material	polished aluminum
Concentration factor	measured = 3 (theoretical = 13)

In-house solar parabolic trough continuous-flow capillary reactor

Illustration of light focusing by the trough using a red laser pointer. The capillary tube can be raised or lowered to achieve a broader or narrower focus line.

Solar float (donated by Professor Emeritus Robert S. H. Liu from the University of Hawaii)

View of solar float setup for naphthoquinone photoreactions.

View of sample chamber for photodecarboxylations.

Selected solar radiation data

Photoacylations were conducted in February 2016 and April 2017. Photocycloadditions were conducted in September and December 2018. Photodecarboxylations were conducted in January and March 2015 and August 2009. All flow illuminations were launched at noon, when solar irradiation was most intense, and were typically run until 3-4 pm. All batch photoacylations and photocycloadditions were performed between

noon and 4 pm together with the corresponding flow experiments. Batch photodecarboxylations were conducted between 8 am and 5 pm instead.

¹H- and ¹³C-NMR spectra

1-(1,4-Dihydroxynaphthalen-2-yl)butan-1-one (3a)

¹H-NMR (400 MHz, CDCI₃):

1-(1,4-Dihydroxynaphthalen-2-yl)dodecan-1-one (3b)

¹H-NMR (400 MHz, CDCl₃):

1-(1,4-Dihydroxynaphthalen-2-yl)buten-1-one (3c)

¹H-NMR (400 MHz, DMSO-d₆):

(1,4-Dihydroxy-naphthalen-2-yl)-*p*-tolyl-methanone (3d)

(1,4-Dihydroxy-2-naphthalenyl)bis(p-tolylmethanone) (5)

¹H-NMR (400 MHz, acetone-d₆):

(4-Chlorophenyl)-(1,4-dihydroxynaphthanlen-2-yl)-methanone (3e)

¹H-NMR (400 MHz, acetone-d₆):

1-Phenyl-1,2,2a,8a-tetrahydrocyclobuta[b]naphthal-ene-3,8-dione (7a)

Main anti-isomer:

¹H-NMR (400 MHz, CDCl₃):

Minor *syn*-isomer: ¹H-NMR (400 MHz, CDCI₃):

1,1-Diphenyl-1,2,2a,8a-tetrahydrocyclobuta[b]naphthalene-3,8-dione (7b)

¹H-NMR (400 MHz, CDCl₃):

anti-2,3,3a,3b,9a,9b-Hexahydro-1H-cyclopenta[3,4]cyclobuta[1,2-b]naphthalene-4,9-dione (7c)

¹³C-NMR (100 MHz, CDCl₃):

3,8-Dioxo-2-phenyl-1,3,8,8a-tetrahydrocyclobuta[b]naphthalene-2a(2H)-yl acetate (7d)

¹H-NMR (400 MHz, CDCl₃):

3,8-Dioxo-2,2-diphenyl-1,3,8,8a-tetrahydrocyclobuta[b]-naphthalen-2a(2H)-yl acetate (7e)

¹H-NMR (400 MHz, CDCl₃):

¹³C-NMR (100 MHz, CDCI₃):

S-16

3-Benzyl-3-hydroxy-2-methylisoindolin-1-one (10a)

¹H-NMR (400 MHz, acetone-d₆):

3-Benzyl-3-hydroxyisoindolin-1-one (10b)

¹H-NMR (400 MHz, acetone-d₆):

3-Benzyl-2-(2-bromoethyl)-3-hydroxyisoindolin-1-one (10c)

¹H-NMR (400 MHz, acetone-d₆):

2-(2-Bromoethyl)-3-hydroxy-3-(4-methoxybenzyl)isoindolin-1-one (10d)

¹H-NMR (400 MHz, acetone-d₆):

4-((2-(2-Bromoethyl)-1-hydroxy-3-oxoisoindolin-1-yl)methyl)phenyl acetate (10e)

¹H-NMR (400 MHz, acetone-d₆):

3-Benzyl-2-(3-bromopropyl)-3-hydroxyisoindolin-1-one (10f)

¹H-NMR (400 MHz, acetone-d₆):

