10.1071/CH20189_AC

©CSIRO 2020

Australian Journal of Chemistry 2020, 73(12), 1284-1291

Supplementary Material

Chemical Nature of Spent Coffee Grounds and Husks

Temma Carruthers-Taylor,^A Jhumur Banerjee,^{A,C} Karen Little,^A Yong Foo Wong,^{A,B} William Roy Jackson,^{A,D} and Antonio F. Patti^{A,E}

^ASchool of Chemistry, Monash University, Wellington Road, Clayton, Vic. 3800, Australia.

^BSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.

^CIndian Institute of Technology, Main Gate Road, IIT Area, Powai, Mumbai, Maharashtra 400076, India.

^DDeceased.

^ECorresponding author. Email: tony.patti@monash.edu

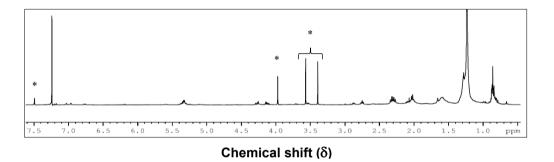


Figure S1. Husk ¹H NMR spectra of ethanol 2 hour extractions. Residual caffeine, observed by ¹H NMR at δ7.51, 4.00, 3.59 and 3.41 ppm. detected in the husk ethanol extraction spectrum *= peaks attributed to caffeine, according to Wishart, Knox ^[1].

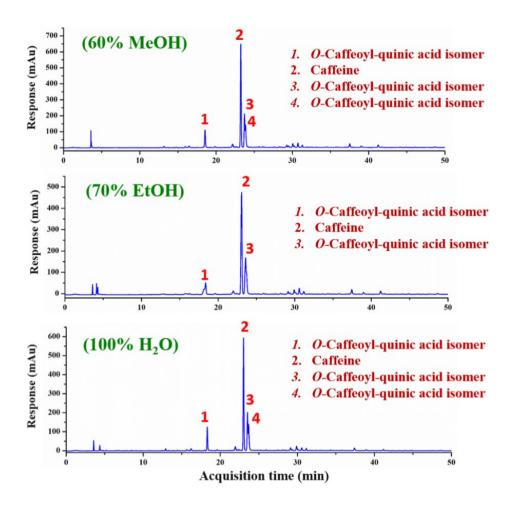
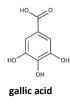



Figure S2. LC-MS chromatograms of SCGs ultrasonic bath extraction using different solvents for twohours. The 3-4 major components are identified and it is likely the 4th peak associated with *O*-Caffeoyl-quinic acid isomer in the 70% EtOH spectra was present but not well resolved in the extract.

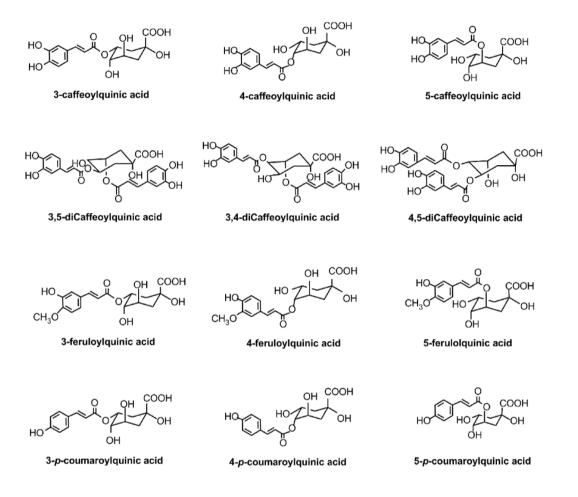


Figure S3. Common Chlorogenic Acids found in Spent Coffee Grounds ^[2,3]

Table S1. Caffeine and Gallic Acid Equivalents (GAEs) concentrations from SCGs extractions with different solvents, averages \pm SD, in a ultrasonic bath. n=2. Letters represent the Tukey's post-hoc test (p=<0.05), caffeine and GAEs were analysed separately. Caffeine was quantified by LC-MS and GAEs by colorimetric analysis.

Solvent	Extraction time (hrs)	Caffeine (mg/g)	GAEs (mg/g)
60% MeOH	1.5	$4.9\pm0.2^{\text{ b}}$	21.8 ± 0.2 ^b
	2	$4.9\pm0.3^{\text{ b}}$	22.2 ± 0.3 ^b
70% EtOH	1.5	$4.9\pm0.1^{\text{ b}}$	23.1 ± 0.8 ^b
	2	4.8 ± 0.1 ^b	22.3 ± 1.7 ^b
100% DI H ₂ O	1.5	4.1 ± 0.1 ^a	17.0 ± 0.3 ^a
	2	4.1 ± 0.1 ^a	16.8 ± 0.1 ª
Solvent	Extraction time (hrs)	Caffeine (mg/g)	GAEs (mg/g)
60% MeOH	1.5	$4.9\pm0.2^{\text{ b}}$	21.8 ± 0.2 ^b
	2	$4.9\pm0.3^{\text{ b}}$	22.2 ± 0.3 ^b
70% EtOH	1.5	4.9 ± 0.1^{b}	23.1 ± 0.8 ^b
	2	$4.8 \pm 0.1^{\text{ b}}$	22.3 ± 1.7 ^b
100% DI H ₂ O	1.5	4.1 ± 0.1 ^a	17.0 ± 0.3 ^a
	2	4.1 ± 0.1 ^a	16.8 ± 0.1 ^a

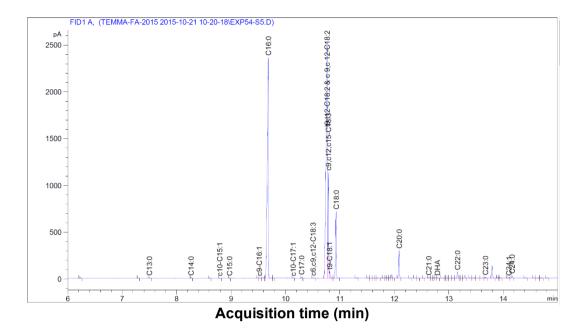


Figure S4. Typical GC chromatogram of SCGs (similar chromatograms were obtained for both ethanol and hexane extraction)

References

[1] D. S. Wishart, C. Knox, A. C. Guo, R. Eisner, N. Young, B. Gautam, HMDB: a knowledgebase for the human metabolome. *Nucleic acids research*. **2009**;37(Database issue):D603-10.

[2] Daniele Del Rio 1, Angelique Stalmach 2, Luca Calani 1 and Alan Crozier, Bioavailability of Coffee Chlorogenic Acids and Green Tea Flavan-3-ols. *Nutrients* **2010**; *2*: 820-833

[3] H. Xu, W. Wang, X. Liu, F. Yuan, Y. Gao. Antioxidative phenolics obtained from spent coffee grounds (Coffea arabica L.) by subcritical water extraction. *Industrial Crops and Products*. 2015;76:946-54.