Supplementary Material

NMR Chemical Shift and Methylation of 4-Nitroimidazole: Experiment and Theory

Frederick Backler,^A Marc Antoine Sani,^B Frances Separovic,^B Vladislav Vasilyev,^C and Feng Wang^{A,D}

^ADepartment of Chemistry and Biotechnology and Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Vic. 3122, Australia.

^BSchool of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Vic. 3010, Australia.

^cNational Computational Infrastructure, Australian National University, Canberra, ACT 0200, Australia.

^DCorresponding author. Email: <u>fwang@swin.edu.au</u>

Atom No	Natural Charge	Core		Valence	Rydberg	Total
C 1	0.20445 1.99940	3.76238	0.03377	5.79555		
N 2	-0.52322	1.99939	5.51077	0.01306	7.52322	
C 3	-0.03152 1.99911		4.00869	0.02372	6.03152	
C 4	0.19001 1.99886	3.77911	0.03202	5.80999		
N 5	-0.44335	1.99937	5.42329	0.02069	7.44335	
H 6	0.24334 0.00000	0.75462	0.00204	0.75666		
N 7	0.47621 1.99942	4.46689	0.05748	6.52379		
08	-0.39923	1.99980	6.38485	0.01458	8.39923	
09	-0.34177	1.99979	6.32633	0.01565	8.34177	
H 10	0.20427 0.00000	0.79402	0.00171	0.79573		
H 11	0.42081 0.00000	0.57683	0.00236	0.57919		
Total	0.00000 15.9951	4	41.7877	8	0.21708	58.00000
4-NI Natu	ral Population					

Table S1 Summary of Natural Population Analysis of 4-NI*

Core 15.99514 (99.9696% of 16) Valence 41.78778 (99.4947% of 42)

*B3PW91/6-311++g(d,p), gas phase.

Atom No	Natural Charge	Core	Valence Rydberg	g Total
C 1	0.22440 1.99940	3.74309 0.03312	2 5.77560	
N 2	-0.49978	1.99938 5.48729	0.01311 7.49978	
C 3	0.00523 1.99913	3.97313 0.02251	5.99477	
C 4	0.17624 1.99890	3.79384 0.03102	2 5.82376	
N 5	-0.49407	1.99939 5.47315	5 0.02152 7.49407	
H 6	0.25539 0.00000	0.74284 0.00177	0.74461	
N 7	0.48193 1.99940	0 4.46283 0.05584	6.51807	
08	-0.42228 1.9998	0 6.40773	8 0.01475 8.42228	
09	-0.39981	1.99979 6.38409	0.01593 8.39981	
H 10	0.22226 0.00000	0.77613 0.00161	0.77774	
H 11	0.45048 0.00000	0.54754 0.00197	0.54952	
* Total *	-0.00000	15.99519	41.79166	0.21315 58.0000
Natural Po	opulation			
Core	15.99519	(99.9700% of 16)	
Valence 4	1.79166 (99.503	9% of 42)		

Table S2 Summary of Natural Population Analysis of 4-NI in DMSO solvent*

*B3PW91/6-311++g(d,p), DMSO solvent.

Atom No	Natural Charge	Core		Valence	Rydberg	Tota
C 1	0.21604	1.99932	3.75161	0.03303	5.78396	
N 2	-0.38431	1.99930	5.37211	0.01290	7.38431	
C 3	-0.02358	1.99906	4.00248	0.02203	6.02358	
C 4	0.19568	1.99886	3.77311	0.03234	5.80432	
N 5	-0.44766	1.99937	5.42651	0.02177	7.44766	
H 6	0.24006 0.00000	0.75783	0.00210	0.75994		
N 7	0.47545 1.99942	4.46764	0.05748	6.52455		
O 8	-0.40268	1.99980	6.38824	0.01464	8.40268	
09	-0.34488	1.99979	6.32941	0.01568	8.34488	
C 10	-0.36527	1.99931	4.35365	0.01232	6.36527	
H 11	0.21262 0.00000	0.78593	0.00145	0.78738		
H 12	0.21527 0.00000	0.78337	0.00137	0.78473		
H 13	0.21263 0.00000	0.78592	0.00145	0.78737		
H 14	0.20063 0.00000	0.79751	0.00186	0.79937		
Total	0.00000 17.9942	4	47.7753	3	0.23043	66.00000

Table S3 Summary of Natural Population Analysis of CH3-4NI*

CH₃-4NI Natural Population

Core	17.99424	(99.9680% of 18)
Valence 47.7753	3 (99.531)	9% of 48)

*B3PW91/6-311++g(d,p), gas phase.

Atom No	Natural Charge	Core		Valence	Rydberg		Tota
C 1	0.23522 1.99933		3.73309	0.03236	5.76478		
N 2	-0.36218	1.99929)	5.35014	0.01275	7.36218	
C 3	0.01377	1.99907	3.96630	0.02086	5.98623		
C 4	0.18173 1.99890)	3.78802	0.03135	5.81827		
N 5	-0.49651	1.99939)	5.47455	0.02258	7.49651	
H 6	0.25257 0.00000	0.74558	0.00185	0.74743			
N 7	0.48060 1.99940	4.46414	0.05587	6.51940			
O 8	-0.42574	1.99980	6.41111	0.01482	8.42574		
09	-0.40344	1.99979	6.38769	0.01595	8.40344		
C 10	-0.36824	1.99930	4.35650	0.01245	6.36824		
H 11	0.22327 0.00000	0.77544	0.00129	0.77673			
H 12	0.22604 0.00000	0.77269	0.00126	0.77396			
H 13	0.22327 0.00000	0.77544	0.00129	0.77673			
H 14	0.21965 0.00000	0.77860	0.00176	0.78035			
Total	0.00000 17.9942	7	47.7792	8	0.22645	66.0000	0
CH ₃ -4NI 1	Natural Population						

Table S4 Summary of Natural Population Analysis of CH3-4NI in DMSO*

Core	17.99427	(99.9682% of 18)
Valence 47.7792	8 (99.540)	2% of 48)

*B3PW91/6-311++g(d,p), DMSO solvent.

	4-NI			CH ₃ -4NI			
Parameters		O₂N N N H			O ₂ N N CH ₃		
	Crystal	Calcul	ated ^b	Crystal	Calcu	lated ^b	
	Struct ^a	B3LYP	B3PW91	Struct ^c	B3LYP	B3PW91	
R ₅ /Å	6.756	6.785	6.767	6.661	6.787	6.756	
N ₍₁₎ -C ₍₂₎ /Å	1.357	1.374	1.369	1.323	1.375	1.370	
C ₍₂₎ -N ₍₃₎ /Å	1.317	1.309	1.307	1.354	1.310	1.308	
N ₍₃₎ -C ₍₄₎ /Å	1.367	1.360	1.356	1.267	1.358	1.354	
C ₍₄₎ -C ₍₅₎ /Å	1.360	1.374	1.372	1.409	1.376	1.374	
C ₍₅₎ -N ₍₁₎ /Å	1.355	1.368	1.363	1.308	1.368	1.364	
C ₍₄₎ -N ₍₆₎ /Å	1.428	1.450	1.446	1.433	1.449	1.445	
N ₍₆₎ -O ₍₁₎ /Å	1.236	1.232	1.226	1.248	1.232	1.226	
N ₍₆₎ =O ₍₂₎ /Å	1.234	1.218	1.213	1.125	1.219	1.214	
O ₍₁₎ -N ₍₆₎ -O ₍₂₎ /°	123.3	125.50	125.69	121.20	125.38	125.67	
N ₍₆₎ -C ₍₄₎ -N ₍₃₎ /°	120.7	122.68	122.66	116.95	122.77	122.75	
N ₍₁₎ -C ₍₂₎ -N ₍₃₎ /°	111.9	111.55	111.66	118.15	112.32	112.43	

Table S5. Comparison of the geometric parameters of 4-nitroimidazole and 1-methyl-4-nitroimidazole using different DFT functionals.

a[7]

^b The present calculation using 6-311++G** method in gas phase.

c[46]

				Ex	pt%			
Site	B3	LYP	PE	BE0		M06		
	4-NI	CH ₃ -4NI	4-NI	CH ₃ -4NI	4-NI	4-NI(gas) ^{&}	4-NI	CH ₃ -4NI
C ₍₂₎	139.70	142.99	137.03	140.54	130.49	146.01	135.4	137.8
C ₍₄₎	155.45	156.05	153.58	154.13	151.67	165.23	149.2ª	147.4
C(5)	126.18	129.91	122.85	126.73	115.49	129.13	118.6	121.2
C _{methyl}	-	35.26	-	35.95	-	-	-	35.4
N ₍₁₎	190.76	204.82	191.62	206.01	174.00	187.55	174.9°	173.5 ^b
N ₍₃₎	281.64	280.75	276.46	276.08	288.64	308.83	251.6 ^c	244.5 ^b
N ₍₆₎	398.57	398.62	371.74	371.59	379.69	404.70	363.1°	-
H ₍₁₎	9.25	-	9.65	-	8.29	8.22	-	-
H ₍₂₎	8.10	7.33	7.88	7.64	7.32	7.14	7.8	7.7
H ₍₅₎	7.56	8.00	8.37	8.27	7.77	7.60	8.2	8.3
H ₍₇₎	-	3.73	-	4.12	-	-	-	3.8

Table S6. ¹H, ¹³C and ¹⁵N NMR chemical shift calculations (ppm) of 4-NI and CH₃-4NI*.

* Using other DFT functionals in DMSO solvent.
& 6-311++G(d,p) basis set.
[%] All experimental measurements are from the present study except where indicated.
^a McKillop *et al.* ^[43]measured in CD₃SCCD₃ solvent.
^b Crystal phase of Ueda *et al.* ^[9]measured for crystalline sample at room temperature. ¹⁵N-NMR are referenced to ¹⁵NH₃Cl nitrogen (-341.2 ppm) relative to NH₃ at 380.5 ppm.
^c Chen *et al.* ^[1]in DMSO/(CH₃)₂CO (3:1) solution for 4-NI.

Site	4-Nitr O ₂ ı	oimidazole $N_{5}^{6} \xrightarrow{3}_{N_{1}}^{3}$		1-Methyl-4-nitroimidazole O ₂ N N CH ₃					
	Present* (solid-DNP)	Present* (soln)	Refs (soln)	Present* (solid)	Present* (soln)	Ref ^{al} (soli	Ref ^{ø,e,g} (soln)		
C ₍₂₎	136.4	135.4	136.7 ^{a,g}	137.6	137.5	141.9	136.6 ^e (138.6) ^g		
C ₍₄₎	144.7	-	149.2 ^{a,g}	147.5	-	151.8	148.3° (147.8) ^g		
C(5)	119.4	118.6	119.8 ^{a,g}	121.3	122.0	117.9	120.1° (123.1) ^g		
C _{methyl}	-	-	-	35.6	33.9	-	34.6 ^e (42.2) ^g		
N ₍₁₎	181.5 (180.5) ^b	-	174.9°	-		182.2	173.5 ^b		
N ₍₃₎	237.4 (237.5) ^b	-	251.6°	-		256.1	244.5 ^b		
N ₍₆₎	363.0	-	363.1°	-		360.3	-		
H ₍₁₎		-							
H ₍₂₎		7.8			7.7		7.76 ^e		
H ₍₅₎		8.2			8.3		7.42 ^e		
H ₍₇₎		-			3.8		3.83 ^e		

Table S7. Comparison of the measured ¹³C and ¹⁵N NMR chemical shifts (ppm) for 4-nitroimidazole (4-NI) and 1-methyl-4-nitro-imidazole (CH₃-4NI).

* Present DNP solid-state NMR measurement at 100 K. Here soln means HSQC in d_6 -DMSO solvent so that $C_{(4)}$ resonance is not observed.

^a McKillop *et al.* ^[43]measured in CD₃SCCD₃ solvent, likely at room temperature.

^b Crystalline sample at room temperature measured using ¹⁵N cross polarization/magic angle spinning (CP/MAS) NMR spectra of 4-substituted imidazole derivatives. Powdered samples of ¹⁵N-enriched glycine (-347.5 ppm from nitromethane) and ¹⁵NH₄C1 (-341.2 ppm) were used as the external standards for the ¹⁵N chemical shift ^[9].

^c Chen *et al.* ^[1]in DMSO/(CH₃)₂CO (3:1) solution for 4NI. The ¹⁵N-NMR are δ + 380.5 ppm.

^d Martino *et al.* ^[53]in DMSO solution for the 1-methyl-4-nitro-5-thioimidazole (MNTI) moiety of nitroprodenafil (NitroproMSild, Structure A in Figure 1).

^e In CDCl₃ solution ^[45] pointed out that the ¹H-NMR chemical shifts at 3.83 ppm, 4.72 ppm and 7.76 ppm in ^[54] could be a typing error for 7.42 ppm.

^f Shchepin RV *et al.*^[55] in methanol: aqueous buffer (~1:1). The smaller chemical shift δ in the solution pH<4.6 and the larger in the solution with pH>12.0. The total chemical shift between the pH range is 31.2 ppm.

^g Lippmma *et al.* ^[44]in DMSO: the error is ± 0.3 ppm for all shifts. The N₍₁₎ and N₍₃₎ were unable to be measured but grouped as N_(ring).

References

<jrn> [53] R. Martino, C. Menendez, S. Balayssac, N. Martins-Froment, C. Lherbet, F. Couderc, V. Gilard, M. Malet-Martino, J. Pharm. Biomed. Anal. 2017, 135, 31. doi:10.1016/j.jpba.2016.12.011

<jrn> [54] A. K. Katritzky, E. F. V. Scriven, S. Majumder, R. G. Akhmedova, N. G. Akhmedov, A. V. Vakulenko, *ARKIVOC* 2005, 2, 179.

<jrn> [55] R. V. Shchepin, D. A. Barskiy, A. M. Coffey, T. Theis, F. Shi, W. S. Warren, B. M. Goodson, E. Y. Chekmenev, *ACS Sens.* 2016, 1, 640. doi:10.1021/acssensors.6b00231