Supplementary Material

CopperComplexesofBenzoylacetonebis-Thiosemicarbazones: metal and ligand based redox reactivity.

Jessica K. Bilyj,^A Jeffrey R. Harmer^B and Paul V. Bernhardt^{A,C}

^A School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia

^B Centre for Advanced Imaging, University of Queensland, Brisbane, Qld 4072, Australia

^c Corresponding author. Email: p.bernhardt@uq.edu.au

Fig. S1 ¹H NMR spectrum of Proligand 1 in $CDCl_3$. Solvent peaks indicated with ×.

Fig. S2 ¹H NMR spectrum of Proligand 2 in CDCl₃. Solvent peaks indicated with ×.

Fig. S3 ¹H NMR spectrum of H_3 banme in DMSO-d (above) and CDCl₃ (below). Solvent peaks indicated with × including EtOH.

Fig. S4 ¹H NMR spectrum of H₃banet in CDCl₃.Solvent peaks indicated with ×.

Fig. S5 ¹H NMR spectrum of H_3 banphe in DMSO-d₆. Solvent peaks indicated with \times .

Fig. S6. Q-band FID-detect field-sweep EPR of $[Cu(banme)]^-$ (anaerobic) at 30 K. Experimental (black), simulation total (red): component A (blue) and component B (cyan). Spin Hamiltonian parameters: component A (40%) g_x 2.0248, g_y 2.0357, g_z 2.158; $A_{Cu,x}$ (MHz) 79, $A_{Cu,y}$ 50, $A_{Cu,z}$ 490; $A_{N,x,y,z}$ 41.9; linewidths (x, y and z) 65, 65 and 120 MHz and component B (60%) g_x 2.0165 , g_y 2.037, g_z 2.120; $A_{Cu,x}$ 50, $A_{Cu,x}$ 70, $A_{Cu,z}$ 515]; $A_{N,x,y,z}$ 41.9.; linewidths (x, y and z) 40, 40 and 160 MHz. N.B. unit conversion A (cm⁻¹) = 0.33356 × 10⁻⁴ A (MHz).

Fig. S7. Q-band FID-detect field-sweep EPR of $[Cu(banet)]^-$ (anaerobic) at 30 K. Experimental (black), simulation total (red): component A (blue) and component B (cyan). Spin Hamiltonian parameters: component A (30%) g_x 2.0248, g_y 2.0365, g_z 2.157; $A_{Cu,x}$ (MHz) 59, $A_{Cu,y}$ 59, $A_{Cu,z}$ 480; $A_{N,x,y,z}$ 41.9; linewidths (x, y and z) 65, 65 and 120 MHz and component B (70%) g_x 2.0165, g_y 2.034, g_z 2.121; $A_{Cu,x}$ 50, $A_{Cu,y}$ 50, $A_{Cu,z}$ 505]; $A_{N,x,y,z}$ 41.9; linewidths (x, y and z) 40, 40 and 160 MHz.

Fig. S8. Q-band FID-detect field-sweep EPR of $[Cu(banphe)]^-$ (anaerobic) at 30 K. Experimental (black) and simulation (red). Spin Hamiltonian parameters: $g_x 2.0161$, $g_y 2.0229$, $g_z 2.1015$; $A_{Cu,x}$ (MHz) 116, $A_{Cu,y} 93$, $A_{Cu,z} 565$; $A_{N,x,y,z} 41.9$; linewidths (x, y and z) 30, 30 and 50 MHz.

Fig. S9. Q-band FID-detect field-sweep EPR of $[Cu(banme)]^-$ (aerobic) at 30 K. Experimental (black) and simulation (red). Spin Hamiltonian parameters: $g_x 2.0248$, $g_y 2.0357$, $g_z 2.158$; $A_{Cu,x}$ (MHz) 79, $A_{Cu,y} 50$, $A_{Cu,z} 490$; $A_{N,x,y,z} 41.9$; linewidths (x, y and z) 65, 65 and 120 MHz.

[Cu(banetO)]

Fig. S10. Q-band FID-detect field-sweep EPR of $[Cu(banet)]^{-}$ (aerobic) at 30 K. Experimental (black) and simulation (red). Spin Hamiltonian parameters g_x 2.0248, g_y 2.0357, g_z 2.158; $A_{Cu,x}$ (MHz) 79, $A_{Cu,y}$ 50, $A_{Cu,z}$ 490; $A_{N,x,y,z}$ 41.9; linewidths (x, y and z) 65, 65 and 120 MHz

[Cu(banpheO)]

Fig. S11. Q-band FID-detect field-sweep EPR of $[Cu(banphe)]^-$ (aerobic) at 30 K. Experimental (black) and simulation (red). Spin Hamiltonian parameters g_x 2.0183, g_y 2.0377, g_z 2.1270; $A_{Cu,x}$ (MHz) 9, $A_{Cu,y}$ 34, $A_{Cu,z}$ 490; $A_{N,x,y,z}$ 41.9; linewidths (x, y and z) 65, 65 and 120 MHz.