Supplementary Material

Reduction Chemistry of Natural Pyrethrins and Preliminary Insecticidal Activity of Reduced Pyrethrins

Todd E. Markham,^{A,B,C} Andrew C. Kotze,^D Peter J. Duggan,^{A,C,E} and Martin R. Johnston^{A,B,E}

^ACollege of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia. ^BFlinders Institute for Nanoscale Science and Technology, Flinders University, Adelaide, SA 5042, Australia.

^cCSIRO Manufacturing, Bag 10, Clayton South, Vic. 3169, Australia.

^DCSIRO Agriculture and Food, St Lucia, Qld 4067, Australia.

^ECorresponding authors. Email: peter.duggan@csiro.au; Martin.Johnston@flinders.edu.au

Table of Contents

details	page
NMR spectra for compound <i>4R</i> -(4a)	4
NMR spectra for compound 4S-(4a)	9
IR spectrum for compound 4a	14
NMR spectra for compound 4R-(4b)	15
NMR spectra for compound 4S-(4b)	20
IR spectrum for compound 4b	25
Figure showing nOe correlations for 4a and 4b epimers	26
NMR spectra for compound 4R-(5a)	27
NMR spectra for compound 4S-(5a)	31
IR spectrum for compound 5a	35
NMR spectra for compound 4R-(5b)	36
NMR spectra for compound 4S-(5b)	40
IR spectrum for compound 5b	44
Representative ¹ H NMR spectrum showing characteristic signals for compound 6a	45
NMR spectra for compound 7a	46
IR spectrum for compound 7a	50
NMR spectra for compound 7b	51
IR spectrum for compound 7b	55
NMR spectra for compound 8a	56
IR spectrum for compound 8a	60
NMR spectra for compound 8b	61
IR spectrum for compound 8b	65
NMR spectra for compound 9a	66
IR spectrum for compound 9a	70
NMR spectra for compound 9b	71
IR spectrum for compound 9b	75
NMR spectra for semi-synthetic 2a + 7a mixture	76
IR spectrum for semi-synthetic 2a + 7a mixture	80

LCMS analysis for semi-synthetic 2a + 7a mixture	81
HPLC analysis for semi-synthetic 2a + 7a mixture	82
NMR spectra for semi-synthetic 2b + 7b mixture	83
IR spectrum for semi-synthetic 2b + 7b mixture	87
LCMS analysis for semi-synthetic 2b + 7b mixture	88
HPLC analysis for semi-synthetic 2b + 7b mixture	89
HPLC analysis of pyrethrum	90
HPLC analysis of "altered" pyrethrum	91
NMR spectra of natural isolated 2a	92
NMR spectra of natural isolated 2b	94
Representative UPCC analyses	96

BRUKER⁸

NAME 20190122 Fyrethrin I Alcohol MAJOR EXPNO 10 PROCNO 1

F2 - Acquisition Parameters Date_ 20190122 9.11 spect 5 mm PABBI 1H/ noesygpph 4096 CDC13 2 16 5411.255 Hz 1.321107 Hz 0.3784704 sec 203 203 92.400 usec 6.50 usec 298.2 K 0.00008170 sec 3.0000000 sec 0.6000002 sec 0.00020000 sec 0.00018480 sec 1H 8.40 usec 16.80 usec 12.55000019 W ====== GRADIENT CHANNEL ====== GPNAM[1] SMSQ10.100 GPZ1 40.00 % P16 1000.00 usec F1 - Acquisition parameters 472 600.1324 MHz 11.464524 Hz 9.017 ppm States-TPPI F2 - Processing parameters 4096 600.1300256 MHz QSINE 0 0 Hz 0 1.00 F1 - Processing parameters 1024 States-TPPI 600.1300234 MHz QSINE 0

4S-(4a) NMR Characterisation

GB

0

Current Data Parameters NAME 20190122 Pyrethrin I OH MINOR EXPNO 11 PROCNO 1

13

(4a) IR Spectrum

14

4R-(4b) NMR Characterisation

NAME 20190121 Pyrethrin II OH MAJOR

4S-(4b) NMR Characterisation

(4b) IR Spectrum

cm-1

PerkinElmer Spectrum Version 10.4.2 Monday, 5 November 2018 1:52 PM

Figure showing nOe correlations for **4a** and **4b** epimers

4R-**4a**

4S-**4a**

4R-**4b**

4S-**4b**

4R-(5a) NMR Characterisation

4S-(5a) NMR Characterisation

PerkinElmer Spectrum Version 10.4.2

4R-(5b) NMR Characterisation

4S-(5b) NMR Characterisation

(5b) IR Spectrum

PerkinElmer Spectrum Version 10.4.00 Friday, 30 November 2018 9:10 AM

Representative ¹H NMR spectrum of partially hydrogenated pyrethrin I (1a) showing characteristic peaks for compound 6a

(7a) NMR Characterisation

(7a) IR Spectrum

(7b) NMR Characterisation

(7b) IR Spectrum

PerkinElmer Spectrum Version 10.4.2 Wednesday, 17 October 2018 3:01 PM

(8a) NMR Characterisation

(8a) IR Spectrum

PerkinElmer Spectrum Version 10.4.2 Wednesday, 17 October 2018 3:01 PM

(8b) NMR Characterisation

(8b) IR Spectrum

PerkinElmer Spectrum Version 10.4.2 Wednesday, 17 October 2018 3:02 PM

(9a) NMR Characterisation

(9a) IR Spectrum

PerkinElmer Spectrum Version 10.4.2 Friday, 16 November 2018 2:10 PM

(9b) NMR Characterisation

(9b) IR Spectrum

Semi-synthetic (2a) + (7a) mixture NMR Characterisation

PerkinElmer Spectrum Version 10.4.2 Wednesday, 17 October 2018 2:58 PM

Semi-synthetic (2a) + (7a) mixture LC-MS

HPLC analysis Semi-synthetic (2a) + (7a) mixture

Retention time (min)	Compound (#)	Area (mAU)	% Area
45.842	2a	51507.4	68.0
48.926	7a	18624.9	24.7

Semi-synthetic (2b) + (7b) mixture NMR Characterisation

PerkinElmer Spectrum Version 10.4.2 Wednesday, 17 October 2018 2:59 PM

Semi-synthetic (2b) + (7b) mixture LC-MS

HPLC analysis Semi-synthetic (2b) + (7b) mixture

Retention time (min)	Compound (#)	Area (mAU)	% Area
28.023	2b	83793.2	65.8
32.833	7b	32642.4	25.6

HPLC analysis Pyrethrum

Retention time (min)	Compound (#)	Area (mAU)	% Area
23.960	1b	60141.1	36.2
29.259	2b	7049.85	4.3
40.576	1a	71498.3	43.1
46.764	2a	6303.67	3.8

Constituents	Peaks (min)	% Concentrate
Pyrethrins 1	23.960, 40.576	79.3
Jasmolins 2	29.259, 46.764	8.1

Constituents	Peaks (min)	% Concentrate
Pyrethrins 1	24.037, 40.797	5.0
Jasmolins 2	29.286, 46.779	64.9
Tetrahydropyrethrins 7	33.939, 49.804	15.3

Natural (2a) NMR Characterisation

Natural (2b) NMR Characterisation

