Supplementary Material

Understanding the Polymer Rearrangement of pH Responsive Nanoparticles

Nayeleh Deirram,^A Sarah S. Kermaniyan,^A Angus P. R. Johnston,^B and Georgina K. Such^{A,C}

^ASchool of Chemistry, The University of Melbourne, Parkville, Vic. 3010, Australia.
 ^BMonash Institute of Pharmaceutical Sciences, Monash University, Parkville, Vic. 3052, Australia.

^CCorresponding author. Email: <u>gsuch@unimelb.edu.au</u>

Figure S1. ¹⁶F NMR of Pentafluorophenyl Methacrylate (PFPMA).

Figure S2. ¹H NMR of Pentafluorophenyl Methacrylate (PFPMA).

Figure S3. ¹H NMR of poly(ethylene glycol)-*block*-poly(2-(diethylamino)ethyl methacrylate) (PEG-*b*-PDEAEMA).

Figure S4. ¹H NMR of 2-(diethylamino) ethyl methacrylate-*random*-2-(diisopropylamino) ethyl methacrylate-*random*-pentafluorophenyl methacrylate (PDEAEMA-*r*-PDPAEMA)-*r*-PPFPMA)).

Figure S5. ¹H NMR of [poly(ethylene glycol-*b*-(2-(diethylamino) ethyl methacrylate*random*-pentafluorophenyl methacrylate] ((PEG-*b*-PDEAEMA)-*r*-PPFPMA).

Table S1: Library of core-Cy3 nanoparticles with different amounts of labelled

 polymer within core.

Core-Cy3	Core		Shell
nanoparticles			
Cy3-labelled	(PDEAEMA-r-PDPAEMA)-r-	PDEAEMA-r-	PEG-b-
polymer	(PMA-Cy3)	PDPAEMA	PDEAEMA
(%)	(mg)	(mg)	(mg)
66.7	2	0	1
25	0.75	1.25	1
16.7	0.5	1.5	1
13.3	0.4	1.6	1
8.3	0.25	1.75	1

Figure S6. Fluorescence intensity of mixed Sulfo-Cy5-labelled particles after different times. A) Fluorescence intensity of mixed labelled core-Sulfo-Cy5 nanoparticles with unlabelled particles in PBS pH 7.4 after 20 min, 35 min, 45 min and 60 min B) Fluorescence intensity of mixed labelled shell-Sulfo-Cy5 nanoparticles with unlabelled particles in PBS pH 7.4 after 20 min, 35 min, 45 min and 60 min.

Figure S7. NanoSight result of core-Sulfo-Cy5 labelled nanoparticles in PBS pH 6.0.

Figure S8. A) NanoSight of core-Cy3 nanoparticles in PBS pH 7.4 B) Cryo-TEM of core-Cy3 nanoparticles.

Figure S9. Fluorescence intensity and NanoSight of reformed and non-reformed Cy3labelled particles. A) Fluorescence intensity of mixed core-Cy3 nanoparticles with unlabelled nanoparticles which were mixed at 1:1 (w/w) ratio, incubated in PBS pH 6.0 and then reformed in PBS pH 7.4 (green). The fluorescence intensity of mixing labelled core-Cy3 nanoparticles with unlabelled nanoparticles in PBS pH 7.4 has been brought here from **Figure 4** for comparison (non-reformed particles (pink)). B) NanoSight of reformed core-Cy3 nanoparticles in PBS pH 7.4.