Supplementary Material

Effects of cryoprotectants on phospholipid monolayers – concentration and species dependence

Rekha Raju^{A,B}, Juan Torrent-Burgués^{B,*} and Gary Bryant^{A,*}

^ASchool of Science, RMIT University, Melbourne, Vic. 3000, Australia

^BUniversitat Politècnica de Catalunya (UPC), C/ Colom 1, E08222 Terrassa, Barcelona, Spain.

*Correspondence to: Email: juan.torrent@upc.edu, gary.bryant@rmit.edu.au

Table S1 shows the measured surface tensions. It is seen that DMF has the most significant surface activity, reducing the surface tension by 11.2 mN.m^{-1} compared to pure water. DMSO also showed significant surface activity, while the other molecules had minimal activity. Concentrated DMSO (10% v/v) has a significant effect on the surface tension compared to the 5% v/v concentration studied previously.[1]

Sub phase solutions	Surface tension "γ" (mN/m)	
	5 % CPA [1]	10% CPA
Water	72.6	72.6
glycerol	74.8	71.6
EG	72.8	70.7
DMF	67.0	61.4
DMSO	72.6	67.4

Table S1: Surface tension of water and CPA sub phases

Figure S1: Effect of concentration of CPA subphases on lipid monolayers: DOPC (a); POPC (b); DPPC (c); POPE (d) with DMSO (1); glycerol (2); DMF (3); EG (4).

References

[1] R. Raju, J. Torrent-Burgués, G. Bryant, Interactions of cryoprotective agents with phospholipid membranes -A Langmuir monolayer study, Chemistry and Physics of Lipids 231 (2020) 104949.