Supplementary Material For

Charge-transfer complexs of arylthiotetrathiafulvalenes and TCNQF₄ with structure diversity and electron states

Longfei $Ma^{A, C}$ and Congjie Pan^B

^A Department of Criminal Science and Technology, Henan Police College Zhengzhou, 450046,

P. R. China

^B School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China

^C Corresponding author. Email: malongfei@hnp.edu.cn.

UV-Vis absorption spectra, crystallographic data, crystal structures of 3.TCNQF4 and 4.TCNQF4, and variations of molecular geometries of Ar-S-TTFs in different complexes

Table of contents

Materials and general methods	.83
Synthesis of the complexes	S5
Figure S2-5. UV-Vis absorption spectra	S6
Table S1-2. Crystallographic data	S8
Table S3-4.Selected bond lengths and Nitrile Frequencies in the TCNQF4	S10
Figure S6-12.Crystal structures	S11

Materials and general methods

The Ar-s-TTF (1-5) were synthesized according to previous report $^{[1-2]}$, and they were recrystallized from appropriate solvents to gain high purity. The solvents were purified by following the standard procedure. TCNQF₄ was purchased from energy chemical (Shanghai, China).

Using glassy carbon disk as working electrode, platinum wire as counter electrode and SCE electrode as reference electrode, the electrochemical properties of 1-5 were recorded at the scanning rate of 50 mV s⁻¹ on RST 5000 electrochemical workstation. The supporting electrolyte was $(n-Bu)_4N \cdot PF_6$ (0.1 mol L⁻¹) and the concentration was 5×10^{-4} mol L⁻¹ in CH₂Cl₂. The measurement was carried out after bubbling with N₂ gas for 10 minutes at 20 °C. UV-Vis spectra of 1-5 in CH₂Cl₂ solution (2×10⁻⁵ mol L⁻¹) were measured on UV-2006 UV-Specterophotometer at 20 °C. The solid state UV-Vis spectra were measured by dispersing the samples on the KBr pellet. Infrared (IR) spectra were obtained in transmission mode with PerkinFlmer 400 Fourier transform (FTIR) spectrometer.

The X-ray diffraction measurement was carried out on Super-Nova (Agilent) type diffractometer. The crystal structure was solved by a direct method Olex2 ^[3] and refined by a full matrix least-squares method on F2 by means of SHELXL-97 ^[4]. The calculated positions of the hydrogen atoms were included in the final refinement.

References

[1] Sun, J.; Lu, X.; Shao, J.; Li, X.; Zhang, S.; Wang, B.; Zhao, J.; Shao, Y.; Fang, R.; Wang,
 Z.; Yu, W.; Shao, X. *Chem. Eur. J.* 2013, *19*, 12517. doi:10.1002/chem.201301819.

- [2] Sun, J.; Lu, X.; Shao, J.; Cui, Z.; Shao, Y.; Jiang, G.; Yu, W.; Shao, X. RSC Adv. 2013, 3, 10193. doi:10.1039/C3RA41349G.
- [3] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard J. A. K.; Puschmann. H. "OLEX2: a complete structure solution, refinement and analysis program". *J. Appl. Cryst.*, 2009, 42, 339. doi:10.1107/S0021889808042726.
- [4] G. M. Sheldrick, SHELXL-97, A Program for Crystal Structure Refinement. University of Göttingen, Göttingen, Germany, 1997.

Synthesis of the complexes

Diffusion method: compound 1 (2×10^{-5} mol, 15.1 mg) dissolved in 4 mL CH₂Cl₂ in the test tube, TCNQF₄ (2.2×10^{-5} mol, 6.0 mg) dissolved in 4 mL CH₃CN. After that, 4 mL CH₃CN was added to the solution of 1 slowly. Then the solution of TCNQF₄ was added to the test tube and left standing without disruption in a dark hood at room temperature. After one week, the black columnar crystals were cropped.

evaporation method: Compound 3 (1×10^{-5} mol, 7.5 mg) and TCNQF₄ (1.1×10^{-5} mol, 3.0 mg) were added in 2 ml 1, 2-dichloroethane respectively and heated to 70°C for complete dissolution. Then, the solution of TCNQF₄ was added in solution of 3 and refluxed for 2 hours. The mixture was placed in a dark hood without disruption at room temperature for two weeks to obtain black columnar single crystals.

Figure S1: photographs for the single crystals of the complexes: a) $1 \cdot \text{TCNQF}_4$, b) $2 \cdot \text{TCNQF}_4 \cdot \text{C}_2\text{H}_4\text{Cl}_2$, c) $3 \cdot \text{TCNQF}_4$, d) $4 \cdot \text{TCNQF}_4$, e) (5) $_2 \cdot \text{TCNQF}_4$.

UV-Vis absorption spectra

Figure S2: UV-Vis absorption spectra of a) $\frac{1}{4}$ 2 upon titration with TCNQF₄; b) solid CT complex 2·TCNQF₄·C₂H₄Cl₂.

Figure S3: UV-Vis absorption spectra of a) $\frac{1}{4}$ 3 upon titration with TCNQF₄; b) solid CT complex 3.TCNQF₄.

Figure S4: UV-Vis absorption spectra of a) $\frac{1}{4}$ 4 upon titration with TCNQF₄; b) solid CT complex 4. TCNQF₄.

Figure S5: UV-Vis absorption spectra of a) $\frac{1}{4}$ 5 upon titration with TCNQF₄; b) solid CT complex (5)₂·TCNQF₄.

Crystallographic data

Complexes	1.TCNQF ₄	$2 \cdot TCNQF_4 \cdot (C_2H_4Cl_2)$	3·TCNQF ₄
CCDC number	2103000	2102998	2103002
Empirical formula	$C_{42}H_{20}F_4N_4S_8\\$	$C_{48}H_{32}Cl_2F_4N_4S_8\\$	$C_{50}H_{36}F_4N_4S_8$
Formula weight	913.10	1068.15	1025.31
Temperature [K]	110	173	173
λ [Å]	0.71073	0.71073	0.7173
Crystal size [mm ³]	0.05×0.1×0.2	0.1×0.2×0.3	0.1×0.2×0.4
Crystal system	Monoclinic	Triclinic	Triclinic
space group	$P2_1/n$	<i>P</i> -1	<i>P</i> -1
<i>a</i> [Å]	5.5070(11)	9.6805(7)	8.6620(3)
<i>b</i> [Å]	15.088(3)	10.0453(7)	11.9902(4)
<i>c</i> [Å]	23.988(5)	13.5758(9	24.3664(10)
α [°]	90	95.317(6)	88.751(3)
β[°]	92.54(3)	108.661(6)	81.002(3)
γ [°]	90	109.037(7)	76.965(3)
V[Å ³]	1991.2(7)	1153.61(15)	2434.89(16)
Ζ	2	1	2
dcalc [g•cm-3]	1.523	1.538	1.398
$\mu \ [\mathrm{mm}^{-1}]$	0.506	0.561	0.422
2θmax [°]	49.982	50.054	57.28
Limiting indices	3358/0/262	4067/0/300	10989/0/603
GooF	1.150	1.085	1.073
$R[I \ge 2\sigma(I)]$	0.0296	0.0405	0.0444
wR_2	0.0852	0.1137	0.0945

 Table S1: Crystallographic date for the CT complexes.

Complexes	4·TCNQF ₄	$(5)_2 \cdot TCNQF_4$
CCDC number	2103001	2102999
Empirical formula	$C_{46}H_{28}F_4N_4O_4S_8\\$	$C_{44}H_{36}F_2N_2O_8S_8\\$
Formula weight	1033.20	1015.23
Temperature [K]	173	173
λ [Å]	0.71073	0.71073
Crystal size [mm ³]	0.1×0.1×0.3	0.05×0.1×0.3
Crystal system	Triclinic	Triclinic
space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> [Å]	10.9778(7)	9.5975(5)
<i>b</i> [Å]	13.8315(9)	14.0947(8)
<i>c</i> [Å]	15.3712(6)	17.2237(9)
α [°]	77.684(5)	73.727(5)
β[°]	87.823(4)	84.731(4)
γ [°]	72.846(6)	84.669(4)
V[Å ³]	2178.0(2)	2221.6(2)
Ζ	2	2
dcalc $[g \cdot cm^{-3}]$	1.575	1.518
μ[mm-1]	0.479	0.467
2θmax [°]	57.446	57.304
Limiting indices	9849/0/599	9991/0/585
GooF	1.054	1.061
$R[I \ge 2\sigma(I)]$	0.0437	0.0466
wR_2	0.0943	0.0959

 Table S2: Crystallographic date for the CT complexes.

Selected bond lengths and Nitrile Frequencies in the TCNQF₄

Table S3: Intramolecular distances in TCNQF₄ molecules and calculated charge in the complexes.

NC F CN NC F CN C CN F F						
complex	a/Å	b/Å	c/Å	d/Å	δ	charge
1·TCNQF ₄	1.362	1.424	1.421	1.431	-0.93	-1
$2 \cdot TCNQF_4 \cdot C_2H_4Cl_2$	1.360	1.415	1.419	1.419	-1.06	-1
3·TCNQF ₄	1.355	1.408	1.417	1.416	-1.11	-1
	1.351	1.414	1.414	1.420	-0.98	-1
4·TCNQF ₄	1.358	1.419	1.414	1.414	-0.98	-1
$(5)_2 \cdot \text{TCNQF}_4$	1.358	1.410	1.410	1.424	-0.92	-1

Table S4: Nitrile Frequencies in the TCNQF₄ of CT complexes.

Compound	$V_{CN}(\text{cm}^{-1})$	
TCNQF ₄	2194	2227
1·TCNQF ₄	2167	2190
$2 \cdot TCNQF_4 \cdot (C_2H_4Cl_2)$	2169	2191
3·TCNQF ₄	2171	2193
4·TCNQF ₄	2168	2190
$(5)_2 \cdot \text{TCNQF}_4$	2170	2192

Crystal structures

Figure S6: Molecular geometry of 1 in 1. TCNQF₄.

Figure S7: Molecular geometry of 2 in 2·TCNQF₄·C₂H₄Cl₂.

Figure S8: Molecular geometry of 3 in 3. TCNQF₄.

Figure S9: Crystal structure of $3 \cdot \text{TCNQF}_4$: a) unit cell contents with the typical bond lengths shown (in Å); b) interactions between 3 and TCNQF₄; c) packing structure viewed along the *b*-axis.

Figure S10: Molecular geometry of 4 in 4. TCNQF₄.

Figure S11: Crystal structure of $4 \cdot \text{TCNQF}_4$: a) unit cell contents with the typical bond lengths shown (in Å); b) interactions between 4; c) interactions between TCNQF₄; d) packing structure viewed along the *a*-axis.

Figure S12: Molecular geometry of 5 in $(5)_2 \cdot \text{TCNQF}_4$.