Supplementary Material

Inhibitor mixture for reducing bacteria growth and corrosion on marine steel

Rainier A. Catubig^A, *Agnes Michalczyk*^B, *Wayne C. Neil*^C, *Grant McAdam*^C, *John Forsyth*^{A,B}, *Mahdi Ghorbani*^A, *Ruhamah Yunis*^A, *M. Leigh Ackland*^B, *Maria Forsyth*^A and *Anthony E. Somers*^{A,*}

^AInstitute for Frontier Materials, Deakin University, Burwood, Vic. 3125, Australia

^BLife and Environmental Sciences, Deakin University, Burwood, Vic. 3125, Australia

^CDefence Science and Technology Group, Fishermans Bend, Vic. 3207, Australia

*Correspondence to: Email: anthony.somers@deakin.edu.au

Supplementary Information

Multifunctional inhibitor mixture for reducing bacteria growth and corrosion on marine grade steel

Rainier A. Catubig^a, Agnes Michalczyk^b, Wayne C. Neil^c, Grant M^cAdam^c, John Forsyth^{ab}, Mahdi Ghorbani^a, Ruhamah Yunis^a, M. Leigh Ackland^b, Maria Forsyth^a, and Anthony E. Somers^{a*}

^a Institute for Frontier Materials, Deakin University, Burwood VIC 3125 Australia

^b Life and Environmental Sciences, Deakin University, Burwood VIC 3125 Australia

^c Defence Science and Technology Group, Fishermans Bend VIC 3207 Australia

*Corresponding author. Tel: (+61 3) 9246 8728, Email: anthony.somers@deakin.edu.au

Table S1: The main alloying elements of the 80HLES used in this work.											
Element	Fe	С	Mn	Si	s	Р	Ni	Cr	Мо	Cu	AI
Composition (%wt)	Bal	0.14	0.48	0.17	0.01	0.01	4.30	0.45	0.27	0.22	0.01
• • • •											

Salt	NaCl	MgCl ₂	MgSO₄	CaCl₂	KCI
Mass (g)	26.52	2.44	3.30	1.14	0.73
Concentration (M)	0.45	0.03	0.03	0.01	0.01
Concentration (ppm)	26524.0	2440.7	3300.6	1140.4	725.5

Table S2: Composition of artificial sweater in 1 litre of deionised water

Fig. S1: Polarisation resistance measurements at 30 minutes and at 4 hour intervals for each inhibitor.

Fig. S2: Secondary electron micrographs and EDS spectra of each sample immersed after 24 hours.

Fig. S3: Optical microscopy images showing at least two areas of varied corrosion product deposition for a) uninhibited and b) Cet-4OHCin. The SE micrographs for the orange/darker regions were presented in Fig. 8. The SE micrographs for the areas of reduced corrosion product deposit are presented in c) uninhibited and d) Cet-4OHCin.

Fig. S4: Average corroded volume for each inhibitor after 30 minutes (a) and 24 hour (b) immersion periods.