Supplementary Material

New boron-based coumarin fluorophores for bioimaging applications

Anita Marfavi^{A,B}, Jia Hao Yeo^A, Kathryn G. Leslie^A, Elizabeth J. New^{A,B,C} and Louis M. Rendina^{A,B,*}

^ASchool of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia

^BThe University of Sydney Nano Institute, Sydney, NSW 2006, Australia

^CAustralian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia

Confocal Microscopy

Figure S1: Confocal microscopy images of A549 cells treated with (a) **HCoBA** (10 μ M, 20 min), (b) **HCpBA** (10 μ M, 20 min), (c) **ICPh** (10 μ M, 20 min), and (d) **ICCb** (10 μ M, 20 min), showing coumarin fluorescence ($\lambda_{ex} = 458$ nm, $\lambda_{em} = 468$ -568 nm). Scale bar represents 30 μ m.

Figure S2. Confocal microscopy images of A549 cells treated with Nile Red (50 μ M, 20 min) and (a) **HCoBA** (10 μ M, 20 min), (b) **HCmBA** (10 μ M, 20 min), or (c) **HCpBA** (10 μ M, 20 min), showing (i) Nile Red fluorescence ($\lambda_{ex} = 561 \text{ nm}, \lambda_{em} = 571 \text{ - } 700 \text{ nm}$), (ii) coumarin fluorescence ($\lambda_{ex} = 458 \text{ nm}, \lambda_{em} = 468 \text{ - } 568 \text{ nm}$), and (iii) overlay of (i) and (ii). Pearson's correlation coefficient for treatment with Nile Red are: **HCoBA** (R = 0.27 ± 0.03), **HCmBA** (R = 0.34 ± 0.04), and **HCpBA** (R = 0.40 ± 0.03). Scale bar represents 30 μ m.

Figure S3. Confocal microscopy images of A549 cells treated with MitoTracker Red CMXRos (100 nM, 20 min) and (a) **HCoBA** (10 μ M, 20 min), (b) **HCmBA** (10 μ M, 20 min), or (c) **HCpBA** (10 μ M, 20 min), showing (i) MitoTracker Red CMXRos fluorescence ($\lambda_{ex} = 561 \text{ nm}, \lambda_{em} = 570 \text{ - } 767 \text{ nm}$), (ii) coumarin fluorescence ($\lambda_{ex} = 458 \text{ nm}, \lambda_{em} = 468 \text{ - } 568 \text{ nm}$), and (iii) overlay of (i) and (ii). Pearson's correlation coefficient for treatment with MitoTracker Red CMXRos are: **HCoBA** (R = 0.22), **HCmBA** (R = 0.17), and **HCpBA** (R = 0.55). Scale bar represents 40 μ m.

Figure S4. Confocal microscopy images of A549 cells treated with LysoTracker Red DND-99 (50 nM, 20 min) and (a) **HCoBA** (10 μ M, 20 min), (b) **HCmBA** (10 μ M, 20 min), or (c) **HCpBA** (10 μ M, 20 min), showing (i) LysoTracker Red DND-99 fluorescence ($\lambda_{ex} = 561 \text{ nm}, \lambda_{em} = 568 - 701 \text{ nm}$), (ii) coumarin fluorescence ($\lambda_{ex} = 458 \text{ nm}, \lambda_{em} = 468 - 568 \text{ nm}$), and (iii) overlay of (i) and (ii). NB: Row c shows some evidence of probe precipitation. Pearson's correlation coefficient for treatment with LysoTracker Red DND-99 are: **HCoBA** (R = 0.30 ± 0.06), **HCmBA** (R = 0.33 ± 0.03), and **HCpBA** (R = 0.39 ± 0.04). Scale bar represents 40 μ m.

Figure S5: Confocal microscopy images of DLD-1 cells transfected with mCherry-ER and treated with (a) **HCoBA** (10 μ M, 20 min), (b) **HCmBA** (10 μ M, 20 min), (c) **HCpBA** (10 μ M, 20 min), (d) **HCCb** (10 μ M, 20 min), or (e) **ICCb** (10 μ M, 20 min), showing (i) mCherry-ER fluorescence ($\lambda_{ex} = 561 \text{ nm}$, $\lambda_{em} = 581 \text{ - } 653 \text{ nm}$), (ii) coumarin fluorescence ($\lambda_{ex} = 458 \text{ nm}$, $\lambda_{em} = 468 \text{ - } 568 \text{ nm}$), and (iii) overlay of (i) and (ii). Pearson's correlation coefficients observed: **HCoBA** (R = 0.67 ± 0.03), **HCmBA** (0.60 ± 0.07), **HCpBA** (R = 0.73 ± 0.07), **HCCb** (R = 0.47 ± 0.03), and **ICCb** (R = 0.41 ± 0.05). Scale bar represents 20 μ m.

Fluorescence Spectroscopy

Figure S6: Excitation (blue) and emission (orange) spectra for the boron-based coumarins: (a) **HCoBA** (1 μ M, $\lambda_{ex} = 433$ nm), (b) **HCmBA** (1 μ M, $\lambda_{ex} = 433$ nm), (c) **HCpBA** (1 μ M, $\lambda_{ex} = 435$ nm), (d) **HCCb** (1 μ M, $\lambda_{ex} = 425$ nm), (e) **ICCb** (1 μ M, $\lambda_{ex} = 465$ nm).

NMR and MS Spectra of Novel Compounds

Figure S7.2: ¹³C NMR spectrum of HCoBA in DMSO-d₆.

Figure S7.3: MALDI-TOF mass spectrum of HCoBA.

Figure S8.2: ¹³C NMR spectrum of HCmBA in DMSO-*d*₆.

Figure S8.3: MALDI-TOF mass spectrum of HCmBA.

Figure S9.2: ¹³C NMR spectrum of HCpBA in DMSO-*d*₆.

Figure S10.1: ¹H NMR spectrum of HCCb in DMSO-d₆

Figure S10.2: ¹³C NMR spectrum of HCCb in CDCl₃.

Figure S10.3: MALDI-TOF mass spectrum of HCCb.

Figure S11.2: ¹³C NMR spectrum of ICCb in CDCl₃.

Figure S11.3: APCI mass spectrum of ICCb.