Supplementary Material

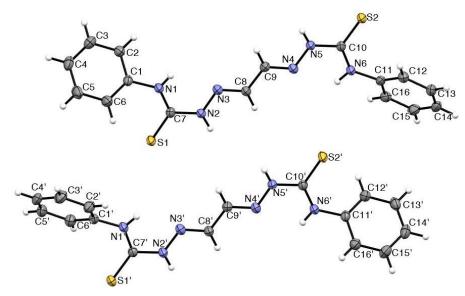
An icosanuclear silver(I) cluster supported by bis (thiosemicarbazonato) ligands

Brett M. Paterson^A, Jonathan M. White^{A,*} and Paul S. Donnelly^{A,*}

^ASchool of Chemistry and Bio21 Molecular Science Biotechnology Institute, University of Melbourne, Melbourne, 3010, Vic., Australia

*Correspondence to: Email: whitejm@unimelb.edu.au; pauld@unimelb.edu.au;

Supporting Information


Crystal structure of glyoxal-bis(4-phenyl-3-thiosemicarbazone) (H₂gtsp).

X-ray Crystallography

Crystals were mounted in low temperature oil then flash cooled to 130 K using an Oxford low temperature device. Intensity data were collected at 130 K with an Oxford XCalibur X-ray diffractometer with Sapphire CCD detector using Cu-K α radiation (graphite crystal monochromator $\lambda = 1.54184$ Å) or a Bruker SMART Apex CCD detector using Mo-K α radiation (graphite crystal monochromator $\lambda = 0.71073$ Å). Data were reduced and corrected for absorption. The structure was solved by direct methods and difference Fourier synthesis using the SHELX suite of programs ^[1] as implemented within the WINGX software. ^[2] The large (7310.1 ų) amount of solvent accessible voids that accounts for just over 50% of the total volume $Ag^{I}_{20}(Hgtsp)_{16}(gtsp)_{2}$ consisted of 2058 electrons and is presumably occupied by a combination of DMF and diethylether molecules. ^[3] CCDC 2128318.

Table S1. Crystallographic data for H₂gtsp.

Crystal Identification	H ₂ gtsp•0.5Et ₂ O
Chemical formula	$C_{18}H_{21}N_6O_{0.5}S_2$
M_w	393.53
Crystal System	Triclinic
T/K	130(2)
Space group	PĪ
a / Å	8.8060(3)
b / Å	11.8089(5
c / Å	19.1752(7
α/°	77.811(3)
eta / $^{\circ}$	83.823(3)
γ/°	88.489(3)
$V/\text{\AA}^3$	1937.73(13)
Z	4
Independent reflections	7634 [R(int) = 0.0309]
$R(I > 2\sigma(I))$	0.0398
wR (all data)	0.1110

Figure S1. ORTEP representation (50 % ellipsoids) of (H₂gtsp)₂•Et₂O. Selected bond distances; C7-S1 1.6825(19) Å, C7-N2 1.360(2) Å, C10-S2 1.6774(18) Å, C10-N5 1.367(2) Å, C(7')-S(1') 1.6769(18) Å, C10'-S2' 1.6802(18) Å, C7'-N2' 1.367(2) Å, C10'-N5' 1.361(2) Å.

References

- [1] G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallographica, Section C: Structural Chemistry. **2015**, *71*, 3.
- [2] L. J. Farrugia. WinGX and ORTEP for Windows: an update. J Appl Crystallogr. **2012**, *45*, 849.
- [3] A. L. Spek. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallographica, Section C: Structural Chemistry. **2015**, *71*, 9.