10.1071/CH22031 Australian Journal of Chemistry

Supplementary Material

Halogenation of calix[4]arenes by [I(py)2]I₃·2I₂

Peter Hahn^A, Till Köhler^A, Martin Börner^A and Berthold Kersting^{A,*}

^AInstitut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany

*Correspondence to: Email: <u>b.kersting@uni-leipzig.de</u>

Supporting Information

Peter Hahn, Till Köhler, Martin Börner, Berthold Kersting

Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig,

Germany. E-mail: b.kersting@uni-leipzig.de; Fax: +49/(0)341-97-36199

1) Selected analytical data for compound 2 (tetra-*p*-iodo-calix[4]arene).

2) Synthesis and characterization data for compound 3 (25-[3-((2'-Methoxy-6'-methylphenol)imino)propoxy]-26,27,28-trihydroxy-calix[4]arene).

3) Selected analytical data for compound 4 (5,11,17-Triiodo-25-[3-((2'-methoxy-6'-methylphenol)imino)propoxy]-26,27,28-trihydroxy-calix[4]arene).

1) Selected analytical data for compound 2 (tetra-*p*-iodo-calix[4]arene).

2. Synthesis and characterization data for compound 3 (25-[3-((2'-Methoxy-6'-methylphenol)imino)propoxy]-26,27,28-trihydroxy-calix[4]arene).

To a solution of calix[4]arene $\mathbf{5}^{[1]}$ (400 mg, 0.831 mmol, 1.00 eq.) in EtOH (200 mL) was added o-vanilline (6, 139 mg, 0.914 mmol, 1.10 eq.) and an excess of solid MgSO₄. The suspension was refluxed for 5 h, filtered and evaporated to dryness. The remaining solid was triturated with MeOH under sonication, filtered, washed with cold MeOH and dried at 80 °C to give 371 mg (73 %) of **3** as a white solid. m.p. 263 °C (decomp.). ¹H-NMR (300 MHz, CD_2Cl_2 , see Fig. S4 for labeling scheme): $\delta 2.55$ (p, 2H, ${}^{3}J = 6.4$ Hz, CH_2 , C^{30}), 3.47-3.50 (m, 4H, CH_{eq} H, $C^{2/20}$, $C^{8/14}$), 3.87 (s, 1H, O-CH₃, C^{39}), 4.17 (t, 2H, ${}^{3}J = 6.5$ Hz, CH₂N, C^{31}), 4.24-4.28 (m, 4H, CHH_{ax}, OCH₂, C^{29} , $C^{8/14}$), 4.33 (d, 2H, 2J = 13.1 Hz, CHH_{ax}, $C^{2/20}$), 6.66-6.72 (m, 3H, para ArH, C^{11} , $C^{5/17}$), 6.42 (t, 1H, ${}^{3}J = 7.9$ Hz, para ArH, C^{23}), 6.86-6.96 (m, 3H, ArH, $C^{34,35,36}$), 7.00-7.10 (m, 8H $C^{10/12}$, $C^{6/16}$, $C^{4/18}$, $C^{22/24}$), 8.66 (s, 1H, N=CH, C^{32}). ¹³C{¹H}-NMR (100 MHz, DMSO-d₆, see Fig. S5 for labeling scheme): δ 30.37 (CH₂, C³⁰), 31.11 (CH₂, C^{2/20}), 31.70 (CH₂, C^{8/14}), 54.35 (CH₂N, C³¹), 55.72 (CH₃, C³⁹), 73.35 (OCH₂, C²⁹), 114.69 (Ar^C, C¹¹), 117.61 (Ar^C, C^{5/17}), 118.32 (Ar^{COR}, C³⁷), 119.00 (Ar^C, C³⁵), 123.17 (Ar^C, C²³), 124.60 (Ar^C, C³⁴), 128.08 (Ar^C, C^{4/18}), 128.28 (Ar^C, C^{6/16}), 128.33 (Ar^C, C^{10/12}), 128.64 (Ar^C, C^{9/13}), 128.72 (Ar^C, C^{22/24}), 128.84 (Ar^C, C³⁶), 128.88 (Ar^C, C^{7/15}, C^{3/19}), 133.94 (Ar^C, C^{1/21}), 148.09 (Ar^{COH}, C³⁸), 151.92 (Ar^{COH}, C²⁷), 152.60 (Ar^{COH}, C^{26/28}), 152.65 (Ar^C, C³³), 152.76 (Ar^{COR}, C²⁵), 166.79 (C=N, C³²). ATR-IR (ZnSe) v/cm⁻¹: 3314 (s, br, v O-H), 3029 (w, br, v O–H), 2937 (w), 2876 (w), 1637 (m, v C=N), 1592 (w, v C=C), 1465 (s, v C=C), 1381 (w, v C=C), 1357 (w), 1250 (m), 1193 (m), 1151 (w), 1084 (m), 1049 (m), 971 (w), 918

(w), 842 (w), 755 (m), 732 (m). UV-vis (CH₂Cl₂/MeOH 3:1 v/v): λ_{max} [nm] (ε [M⁻¹cm⁻¹] = 230 (22760), 267 (11875), 332 (2009), 418 (955). *m/z* (ESI negative mode, MeCN): C₃₉H₃₇NO₆ (615.3) [M-H⁺]⁻ calcd: 614.3; found 614.3. Elemental analysis for C₃₉H₃₇NO₆·0.5H₂O (615.70+9.01) calc. C 74.98, H 6.13, N 2.24, %; found. C 75.26, H 5.99, N 4.89 %. This compound was additionally characterized by X-ray crystallography.

Figure S3. ESI-MS spectrum for 3 (negative mode, MeCN).

Figure S4. ¹H NMR spectrum for **3** in CD_2Cl_2 . Inset: Labeling scheme for compound **3** used to assign NMR chemical shifts.

Figure S5. APT spectrum of **3** in CD_2Cl_2 at ambient temperature. Inset: Labeling scheme for compound **3** used to assign NMR chemical shifts.

Figure S6. ¹H, ¹H COSY spectrum of **3** in CD_2Cl_2 at ambient temperature. See figure SX for assignment of atom labels.

Figure S7. ¹H, ¹H NOESY spectrum of **3** in CD_2Cl_2 at ambient temperature. See figure SX for atom labeling.

3) Selected analytical data for compound 4 (5,11,17-Triiodo-25-[3-((2'-methoxy-6'-methylphenol)imino)propoxy]-26,27,28-trihydroxy-calix[4]arene).

Figure S8. ATR infrared spectrum of 4.

Figure S9. ESI mass spectrum of 4.

Figure S10. ¹H NMR spectrum of 4 in CD₂Cl₂ at ambient temperature.

References

P. Hahn, S. Ullmann, A. Kahnt, B. Abel, B. Kersting, *Inorg. Chim. Acta* **2021**, *514*, 119983.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) sv-0510

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: sv-0510

Bond precision:	C-C = 0.0295 A	Wavelength=1.54186				
Cell:	a=14.3981(7)	b=21.0109(9)	c=12.2992(7)			
	alpha=90	beta=95.279(4)	gamma=90			
Temperature:	180 K					
	Calculated	Reported				
Volume	3704.9(3)	3704.9(3)				
Space group	P 21/c	P 1 21/c 1				
Hall group	-P 2ybc	-P 2ybc				
Moiety formula	C39 H34 I3 N O6	C39 H34 I	C39 H34 I3 N O6			
Sum formula	C39 H34 I3 N O6	C39 H34 I3 N O6				
Mr	993.37	993.37				
Dx,g cm-3	1.781	1.781				
Z	4	4				
Mu (mm-1)	20.257	20.257				
F000	1928.0	1928.0				
F000′	1929.90					
h,k,lmax	10,15,8	10,14,8				
Nref	1422	1361				
Tmin,Tmax	0.031,0.075	0.038,0.13	34			
Tmin'	0.005					
Correction meth AbsCorr = MULTI	od= # Reported T L -SCAN	imits: Tmin=0.038 Tm	ax=0.134			
Data completene	ss= 0.957	Theta(max) = 33.505	5			
R(reflections) =	0.0614(1181)		wR2(reflections)=			
			0.1590(1361)			
S = 1.059	Npar= 2	203				

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level A
THETM01_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550
Calculated sin(theta_max)/wavelength = 0.3580

Author Response: Due to technical reasons the measurement was interupted and the dataset is incomplete. We were not able to grow well diffracting single crystals again.

PLAT201_ALERT_2_A Isotropic non-H Atoms in Main Residue(s) 39 Report C1 C2 C3 C4 C5 etc.

> Author Response: Due to technical reasons the measurement was interupted and the dataset is incomplete. We were not able to grow well diffracting single crystals again.

Alert level B
PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full value Low . 0.956 Why?

Author Response: Due to technical reasons the measurement was interupted and the dataset is incomplete. We were not able to grow well diffracting single crystals again.

> Author Response: Due to technical reasons the measurement was interupted and the dataset is incomplete. We were not able to grow well diffracting single crystals again.

PLAT342_ALERT_3_B Low Bond Precision on C-C Bonds 0.02951 Ang.

Author Response: Due to technical reasons the measurement was interupted and the dataset is incomplete. We were not able to grow well diffracting single crystals again.

Alert level C

```
PLAT220_ALERT_2_C NonSolvent Resd 1 CUeq(max)/Ueq(min) Range4.7 RatioPLAT222_ALERT_3_C NonSolvent Resd 1 HUiso(max)/Uiso(min) Range5.4 Ratio
```

PLAT241_ALERT_2_C	High 'MainMol'	Ueq as Comp	pared to Neig	hbors of	C35	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq as Comp	pared to Neig	hbors of	C37	Check
PLAT241_ALERT_2_C	High 'MainMol'	Ueq as Comp	pared to Neig	hbors of	C38	Check
PLAT242_ALERT_2_C	Low 'MainMol'	Ueq as Comp	pared to Neig	hbors of	C34	Check
PLAT242_ALERT_2_C	Low 'MainMol'	Ueq as Comp	pared to Neig	hbors of	C36	Check
PLAT250_ALERT_2_C	Large U3/U1 Ratio	o for Avera	ge U(i,j) Ten	sor	2.1	Note
PLAT601_ALERT_2_C	Unit Cell Contair	ns Solvent A	Accessible VO	IDS of .	36	Ang**3
PLAT911_ALERT_3_C	Missing FCF Refl	Between Thr	nin & STh/L=	0.358	62	Report
PLAT971_ALERT_2_C	Check Calcd Resid	l. Dens. 1	.54Ang From I	1	2.25	eA-3

Alert level G

PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms				4 Report
PLAT083_ALERT_2_G	SHELXL Second Parameter in	WGHT Unusually	Large	98.34 Why ?
PLAT432_ALERT_2_G	Short Inter XY Contact	I1C28	•	3.42 Ang.
		x,3/2-y,1/2+z	=	4_576 Check
PLAT432_ALERT_2_G	Short Inter XY Contact	I3C26	•	3.41 Ang.
		x,1/2-y,1/2+z	=	4_566 Check
PLAT909_ALERT_3_G	Percentage of I>2sig(I) Dat	ta at Theta(Max)	Still	80% Note
PLAT941_ALERT_3_G	Average HKL Measurement Mul	ltiplicity		4.5 Low
PLAT978_ALERT_2_G	Number C-C Bonds with Posit	tive Residual Der	nsity.	0 Info

2 ALERT level A = Most likely a serious problem - resolve or explain 3 ALERT level B = A potentially serious problem, consider carefully 11 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 14 ALERT type 2 Indicator that the structure model may be wrong or deficient 8 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022

Datablock sv-0510 - ellipsoid plot

