10.1071/CH23122 Australian Journal of Chemistry

Supplementary Material

Evidence for widespread torsion-vibration interaction in substituted toluenes

Jason R. Gascooke^A and Warren D. Lawrance^{A,*}

^ACollege of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia

*Correspondence to: Email: warren.lawrance@flinders.edu.au

Extracting *F*_{Methyl} from experimental *F* values

When comparing the results of quantum chemistry structure optimisations with experimental constants, our focus is on the methyl group structure and the extent to which this varies among the set of substituted toluenes considered. In this context, F_{Methyl} values are extracted from the reported *F* constants, using Eqn 5*a* for the G₆ case or Eqn 5*b* for G₁₂, where the equation numbering matches the paper:

$$F_{Methyl} = \frac{1}{2} \left(F \pm \sqrt{F^2 - 4F \left(A \cos^2 \theta + B \sin^2 \theta \right)} \right)$$
(5*a*)

$$F_{Methyl} = F - G_{Frame} \tag{5b}$$

Here *A* and *B* are the usual rotational constants for the molecule, θ is the angle between the frame-methyl bond and the principal *a* axis and, in the G₁₂ case where $\theta = 0^{\circ}$ or 90°, *G*_{Frame} corresponds to the rotational constant for rotation of the frame about the *a* or *b* axis respectively. These equations show that, in addition to *F*, the conversion to *F*_{Methyl} requires rotational constants and the angle of the methyl-frame bond to the *a*-axis. The constants required for the conversions are provided in the following tables.

In the case of S_0 , most of the molecules considered here have experimentally determined rotational constants, although θ values are not widely reported. For S_1 , there are considerably fewer experimental rotational constants whereas for D⁺ there are no rotational constants reported. Where experimental rotational constants are not available, calculated values associated with the optimised quantum chemistry structures must necessarily be used. Given that θ values are not widely reported, the values used to convert from *F* to *F*_{Methyl} must generally be determined from optimised quantum chemistry structures. In fact, so few θ values are available, and where they are, the values from the optimised structures provide a good match with experiment, we have used the calculated values throughout. For example, for *trans-m*-methylanisole and *cis- m*methylanisole, the experimental values are 33.1 and 51.7° respectively (see Fit III in Ferres *et al.* 2018^[1]), whereas the calculated values are 32.8 and 52.0° respectively.

Computed rotational constants and θ values are provided in Tables S1–S4 and, where experimental values have been reported, they are included in the tables for comparison. Tables S1 and S2 give the S_0 values calculated using the MP2 cc-pVTZ and DFT B3LYP cc-pVTZ quantum chemistry approaches, respectively, Table S3 shows the values for the molecules considered in S_1 (TD DFT B3LYP cc-pVTZ) and Table S4 gives those for D⁺ (DFT B3LYP cc-pVTZ). The two quite different computational approaches were used for S_0 in order to test

the robustness of the computed F_{Methyl} values and their variation with substituent and its position on the ring. The Methods section of the paper gives details of the calculations. Note that, although there is considerable overlap in the molecules considered in the three electronic states, in many cases data are only available for a particular molecule for one or two of the electronic states. As there are comparatively few measurements of the S_1 rotational constants for the molecules considered, we have included in Table S3 a number of cresols deuterated at the O–H position, i.e. O–D, to give further insights into the likely differences between the observed and calculated rotational constants, although F values are not available for these deuterated isotopologues.

The tables show that the differences between the observed and calculated rotational constants are small: for S_0 , the A, B and C root mean square (RMS) percentage differences are 0.70, 0.47 and 0.42% respectively, for the MP2 cc-pVTZ calculations and 0.77, 0.33 and 0.35% respectively, for DFT B3LYP cc-pVTZ, whereas for S1 they are 1.10, 0.91 and 0.92% respectively. These S_0 RMS values exclude *m*-toluidine, which shows significantly larger differences (see Tables S1 and S2).

To ascertain the errors introduced to the experimental F_{Methyl} values by using computed constants in Eqn 5*a* (or Eqn 5*b* for G₁₂) when experimental values are not available, F_{Methyl} values have been determined from experimental *F* values using both the experimental and computed rotational constants. The values are compared in Tables S5 and S6. The comparison reveals that the computed optimised structures are sufficiently accurate that the uncertainty introduced into the F_{Methyl} values is negligible when using computed versus experimental rotational constants. For S₀, the average difference between the two is 0.0005 ± 0.0008 cm⁻¹ for MP2 cc-pVTZ and 0.0008 ± 0.0010 cm⁻¹ for DFT B3LYP cc-pVTZ, whereas for S₁ the difference is 0.0005 ± 0.0016 cm⁻¹. The uncertainties correspond to ± one standard deviation. There are no data available to compare the cation structures, but the uncertainties are likely to be similar to those for the S₀ and S₁ cases. The experimental *F* values are typically specified to two decimal places, so the uncertainties associated with using calculated constants are much smaller than typical experimental uncertainties.

Molecule Ref. A^{A} (MHz) B^{A} (MHz) C (MHz) $\theta(\circ)$ % Diff. % Diff. Exp. Comp. Comp. Comp. % Diff. Exp. Exp. [2] Toluene 5730 5756.2 -0.46 2518 2529 -0.441749 1757 -0.450 3243 o-Fluorotoluene [3] 3265.8 -0.72181 2186 -0.231314 1320 -0.4228.9 *m*-Fluorotoluene [4] 3715 3662.9 1.41 1767 1768 1198 1201 30 -0.1-0.32*p*-Fluorotoluene [5,6] 5702 5737.2 1430 1433 -0.221144 1147 0 -0.61-0.29*m*-Chlorotoluene (^{35}Cl) [7] 3373 3340.9 0.96 1195 1194 0.07 882.5 884.7 -0.2542.5 *p*-Chlorotoluene (³⁵Cl) [8] 5711 5740.6 968.2 970 827.9 829.8 -0.230 -0.52-0.18*o*-Tolunitrile [9] 2893 2920.9 1500 1498 0.14 993.5 996.3 52.1 -0.97-0.28*m*-Tolunitrile [10] 3332 3315 0.5 1203 1198 0.4 883.9 884.9 42.4 -0.11*p*-Tolunitrile 5726.6 980.5 837.2 0 [11] 882.4 *m*-Ethynyltoluene (3-Methylphenylacetylene) 3330 3299.1 0.94 1197 1196 0.08 880.4 43.4 -0.23[12] 3274 3301 2202 1332 trans-o-Cresol -0.832196 -0.271325 -0.4827.8 [12] 3250 3272.3 cis-o-Cresol 2202 2209 1324 1330 28.5 -0.7-0.33-0.46[13] trans-m-Cresol 3661 3667.8 1797 1215 1219 29.5 1806 -0.18-0.46-0.36[13] cis-m-Cresol 3666 3678.1 1793 1800 1213 1218 29.3 -0.33-0.37-0.35[14] 0.9 *p*-Cresol 5495 5525.7 1457 1462 1160 1164 -0.57-0.32-0.35o-Toluidine^B [15] 3230 3261.3 2189 2194 1324 29 -0.96-0.251317 -0.57m-Toluidine^B [15] 3503 3651.6 1924 1797 6.6 1210 1215 29.6 -4.24-0.38*p*-Toluidine^B [16] 5656 5685.8 1452 0.8 -0.521457 -0.341157 1161 -0.4trans-o-Methylanisole [17] 2489 2501.5 -0.491558 1573 -0.95970.5 977.3 -0.769.6 3522 *trans-m*-Methylanisole [1] 3557.2 -1 1122 1128 -0.6 862.1 865.8 -0.4332.8 2755 2758.4 52 *cis-m*-Methylanisole [1] -0.111291 1307 -1.21890.9 896.7 -0.65*p*-Methylanisole [18] 4785 7.1 4795.1 -0.22983.6 991.3 -0.78824.7 830 -0.633057 *trans-m*-Methylthioanisole 869.1 682.5 36.9 *trans-m*-Methylstyrene 3527.6 1132 861.5 34.9 cis-m-Methylstyrene 2842.4 1278 886.4 50.8 [19] 4962.3 984.8 *p*-Methylstyrene 4970 0.15 980.3 -0.46822.7 825.9 -0.396.5 *p*-Methylbenzaldehyde [20] 4986 5018.7 987.8 987.8 0.01 826.9 829.6 6.7 -0.65-0.32

Table S1. Rotational constants and θ values for substituted toluenes in the ground electronic state, S₀, calculated using the MP2 cc-pVTZ combination of theory and basis set.

For G_{12} molecules, the methyl axis lies parallel to the *a* or *b* axis and a respective value for θ of 0° or 90° is shown. The experimental rotational constants are shown (to one decimal place) where they are available. The percentage differences between the experimental and computed values

are shown for each constant:

Percentage difference =
$$100 \times \frac{(\text{Expt} - \text{Calc})}{\text{Expt}}$$

^A For G_{12} molecules, the methyl axis lies parallel to either the *a* or *b* axis. In this case, the corresponding constant, *A* or *B*, respectively corresponds to that of the frame alone and is usually denoted A_F or B_F . The computed rotational constants are for the optimised lowest energy methyl configuration.

^BIn the S₀ state, toluidines are not strictly planar as the amino group hydrogen atoms tilt out of plane. However, due to the low H mass, these molecules are well approximated as planar for the purposes of these comparisons. Tan and Pratt assumed *p*-toluidine to be of effectively G_{12} symmetry in their analysis of the rotational structure.^[16]

Molecule	A^{A} (MHz)	B^{A} (MHz)	<i>C</i> (N	$\theta(^{\circ})$	
	Comp.	% Diff.	Comp.	% Diff.	Comp.	% Diff.	. /
Toluene	5781.3	-0.9	2527.6	-0.4	1758.6	-0.55	0
o-Fluorotoluene	3258	-0.46	2187.4	-0.32	1319.3	-0.38	29
<i>m</i> -Fluorotoluene	3669.6	1.23	1767.3	-0.04	1201.6	-0.34	29.9
<i>p</i> -Fluorotoluene	5758	-0.98	1431.6	-0.09	1146.5	-0.26	0.8
<i>m</i> -Chlorotoluene (³⁵ Cl)	3343.8	0.88	1188.1	0.61	881.4	0.13	42.5
<i>p</i> -Chlorotoluene (³⁵ Cl)	5767.7	-1	964.1	0.42	826	0.23	0
o-Tolunitrile	2890.3	0.09	1510.3	-0.66	998	-0.45	53.5
<i>m</i> -Tolunitrile	3321.3	0.31	1203.5	-0.04	888.2	-0.49	42.3
<i>p</i> -Tolunitrile	5748		983.9		840.1		0
<i>m</i> -Ethynyltoluene (3-Methylphenylacetylene)	3307	0.7	1199.4	-0.22	885	-0.52	43.1
trans-o-Cresol	3286.3	-0.38	2206.8	-0.48	1331	-0.42	28.1
cis-o-Cresol	3265.8	-0.5	2211.4	-0.42	1329.4	-0.44	28.6
trans-m-Cresol	3678.9	-0.48	1804.4	-0.41	1219.7	-0.42	29.3
cis-m-Cresol	3683.1	-0.47	1800.9	-0.42	1218.6	-0.43	29.2
<i>p</i> -Cresol	5546.4	-0.94	1460.1	-0.22	1164.2	-0.34	0.7
o-Toluidine ^B	3243.8	-0.42	2199.3	-0.48	1322.9	-0.45	29.5
<i>m</i> -Toluidine ^B	3659.6	-4.47	1797.2	6.57	1215.6	-0.44	29.4
<i>p</i> -Toluidine ^B	5708.2	-0.92	1455.3	-0.23	1160.9	-0.36	0.6
trans-o-Methylanisole	2502	-0.51	1557.7	0	971.6	-0.11	70.2
trans-m-Methylanisole	3557.1	-1	1121.2	0.02	861.7	0.04	33.1
cis-m-Methylanisole	2770.4	-0.55	1292.7	-0.12	891.2	-0.04	51.9
<i>p</i> -Methylanisole	4839.7	-1.15	982.1	0.16	824.8	-0.01	7
trans-m-Methylthioanisole	3064.3		858.8		676.5		37.1
trans-m-Methylstyrene	3528.6		1130.2		860.5		35
cis-m-Methylstyrene	2855		1271.6		884.5		50.6
<i>p</i> -Methylstyrene	4998.8	-0.59	980.7	-0.04	824	-0.16	6.3
<i>p</i> -Methylbenzaldehyde	5043.5	-1.15	986.6	0.13	829.4	-0.3	6.6

Table S2. As for Table S1, for constants calculated using the DFT B3LYP cc-pVTZ combination of theory and basis set.

The experimental values are given in Table S1. The percentage differences between the experimental and computed values are shown for each constant:

Percentage difference = $100 \times \frac{(\text{Expt} - \text{Calc})}{\text{Expt}}$

^AFor G_{12} molecules, the methyl axis lies parallel to either the *a* or *b* axis. In this case, the corresponding constant, *A* or *B*, respectively corresponds to that of the frame alone and is usually denoted A_F or B_F .

^BIn the S₀ state, toluidines are not strictly planar as the amino group hydrogen atoms tilt out of plane. However, due to the low H mass, these molecules are well approximated as planar for the purposes of these comparisons. Tan and Pratt assumed *p*-toluidine to be of effectively G_{12} symmetry in their analysis of the rotational structure.^[16]

Molecule	Ref.	A ^A (MHz)			B ^A (MHz)		C (MHz)		$\theta(^{\circ})$		
		Exp.	Comp.	% Diff.	Exp.	Comp.	% Diff.	Exp.	Comp.	% Diff.	
Toluene	[21]	5443	5510	-1.23	2472	2498	-1.04	1701	1719	-1.05	0
o-Fluorotoluene			3117			2178			1292		28
<i>m</i> -Fluorotoluene			3552			1751			1181		28.6
<i>p</i> -Fluorotoluene			5423			1443			1140		0
2,6-Difluorotoluene			2209			1737			972.6		90
<i>o</i> -Chlorotoluene (³⁵ Cl)			2726			1538			989.4		58.4
<i>m</i> -Chlorotoluene (35 Cl)			3254			1188			874.9		41.4
<i>p</i> -Chlorotoluene (³⁵ Cl)			5453			977			828.6		0
2-Chloro,6-fluorotoluene			2181			1143			753.5		80.4
o-Tolunitrile	[10]	2853	2902	-1.69	1460	1464	-0.26	971.7	978.7	-0.72	54.1
<i>m</i> -Tolunitrile	[10]	3256	3278	-0.67	1178	1181	-0.31	866.1	873	-0.8	44.2
<i>p</i> -Tolunitrile			5583			968.6			825.4		0
<i>m</i> -Ethynyltoluene (3-Methylphenylacetylene)			3261			1184			873		43.4
<i>p</i> -Ethynyltoluene (4-Methylphenylacetylene)			5523			978.7			831.3		0
trans-o-Cresol			3138			2212			1308		26
cis-o-Cresol			3129			2210			1305		28.2
trans-o-Cresol (OD)	[22]	3022	3033	-0.35	2168	2194	-1.21	1274	1283	-0.76	28.8
cis-o-Cresol (OD)	[22]	3128	3108	0.66	2120	2159	-1.81	1275	1284	-0.71	30.2
trans-m-Cresol			3587			1790			1203		26.8
cis-m-Cresol			3570			1796			1203		27
trans-m-Cresol (OD)	[22]	3539	3581	-1.18	1720	1733	-0.75	1166	1176	-0.83	27.5
cis-m-Cresol (OD)	[22]	3447	3479	-0.92	1752	1766	-0.8	1171	1180	-0.79	28.7
<i>p</i> -Cresol	[23]	5155	5222	-1.3	1471	1484	-0.93	1154	1164	-0.93	2.6
o-Toluidine ^B	[24]	3122	3098	0.77	2182	2218	-1.65	1296	1305	-0.7	29.5
<i>m</i> -Toluidine ^B	[25]	3537	3575	-1.08	1789	1799	-0.57	1198	1206	-0.7	26.9
<i>p</i> -Toluidine ^B	[16]	5313	5397	-1.57	1480	1487	-0.54	1158	1166	-0.71	0
trans-o-Methylanisole	[26]	2408	2420	-0.48	1550	1546	0.25	951.2	954.5	-0.35	73.3
trans-m-Methylanisole	[26]	3407	3442	-1.04	1111	1115	-0.29	847.2	850.8	-0.43	32.3
cis-m-Methylanisole	[26]	2676	2701	-0.92	1279	1282	-0.24	875.7	879	-0.38	50.5
<i>p</i> -Methylanisole ^B	[27]	4682	4627	1.17	984.5	987.8	-0.34	818.5	822.4	-0.47	7.9

Table S3. Rotational constants and θ values for substituted toluenes in the first excited singlet electronic state, S₁, calculated using the TD DFT B3LYP cc-pVTZ combination of theory and basis set.

Molecule	Ref.		$A^{\rm A}$ (MH	z)		$B^{\rm A}$ (MH	z)		C (MHz	z)	$\theta(^{\circ})$
		Exp.	Comp.	% Diff.	Exp.	Comp.	% Diff.	Exp.	Comp.	% Diff.	
trans-m-Methylthioanisole			3011			865.5			677.9		37
trans-m-Methylstyrene			3539			1135			863.7		30.2
cis-m-Methylstyrene			2791			1277			880.7		52.5
<i>p</i> -Methylstyrene	[19]	4764	4690	1.56	997.7	1011	-1.3	816.1	835.8	-2.42	6.4

For G_{12} molecules, the methyl axis lies parallel to the *a* or *b* axis and a respective value for θ of 0° or 90° is shown. The experimental rotational constants are shown to one decimal place where they are available. The computed values apply to the optimised lowest energy methyl configuration. The percentage differences between the experimental and computed values are shown for each constant:

Percentage difference =
$$100 \times \frac{(Expt - Calc)}{Expt}$$

^AFor G_{12} molecules, the methyl axis lies parallel to either the *a* or *b* axis. In this case, the corresponding constant, *A* or *B*, respectively corresponds to that of the frame alone and is usually denoted A_F or B_F .

^BUnusually, the $S_1 A$ values for m = 0 (A state) and m = 1 (E state) are reasonably different at 4682.0 and 4666.5 MHz respectively. The m = 0 A value is shown.

Molecule	Calcul	θ		
	Α	В	С	
Toluene	5482	2587	1757	<u> </u>
o-Fluorotoluene	3196	2228	1323	25
<i>m</i> -Fluorotoluene	3620	1791	1207	26
p-Fluorotoluene	5455	1478	1163	
2,6-Difluorotoluene	2215	1807	994.9	
o-Chlorotoluene	2783	1580	1014	55
2-Chloro,6-fluorotoluene	2186	1188	773.4	79
<i>m</i> -Tolunitrile	3310	1203	887.2	40
<i>p</i> -Tolunitrile	5473	1002	847.1	
trans-o-Cresol	3235	2238	1334	23
cis-o-Cresol	3222	2234	1330	23
trans-m-Cresol	3644	1821	1223	25
cis-m-Cresol	3659	1816	1223	24

Table S4: The calculated rotational constants and θ value (DFT calculations using the B3LYP functional and cc-pVTZ basis set) for various substituted toluenes in the D⁺ cation state.

Molecule	F	Ref.	F_{Methyl}^{Expt} (E)		F_{Methyl}^{Expt} (C)
				MP2 / cc-pVTZ	DFT B3LYP / cc-pVTZ
Toluene	5.471	[2]	5.28	5.279	5.278
o-Fluorotoluene	5.306	[28]	5.204	5.203	5.204
<i>m</i> -Fluorotoluene	5.28	[29]	5.17	5.171	5.171
<i>p</i> -Fluorotoluene	5.46	[30] <i>c</i>	5.27	5.269	5.268
<i>m</i> -Chlorotoluene	5.32	[31]	5.239	5.24	5.24
<i>p</i> -Chlorotoluene	5.4	[31]	5.21	5.209	5.208
<i>o</i> -Tolunitrile	5.49	[10]	5.422	5.421	5.423
<i>m</i> -Tolunitrile	5.26	[32]	5.18	5.18	5.18
<i>p</i> -Tolunitrile	5.4	[32]		5.209	5.208
<i>m</i> -Ethynyltoluene	5.332	[33]	5.253	5.254	5.253
trans-o-Cresol	5.295	[34]	5.192	5.191	5.191
cis-o-Cresol	5.2	[34]	5.098	5.097	5.097
trans-m-Cresol	5.3	[35]	5.191	5.19	5.19
cis-m-Cresol	5.31	[35]	5.2	5.2	5.2
<i>p</i> -Cresol	5.224	[23]	5.034	5.033	5.032
o-Toluidine	5.28	[36]	5.178	5.178	5.178
<i>m</i> -Toluidine	5.37	[36]	5.264	5.261	5.261
<i>p</i> -Toluidine			5.284	5.283	5.283
trans-o-Methylanisole	5.32	В	5.264	5.263	5.264
trans-m-Methylanisole	5.47	С	5.144	5.143	5.144
cis-m-Methylanisole	5.46	[37]	5.538	5.537	5.537
<i>p</i> -Methylanisole	5.3	С	5.137	5.137	5.135
trans-m-Methylthioanisole	5.34	[38]		5.163	5.163
trans-m-Methylstyrene	5.4	[39]		5.307	5.307
cis-m-Methylstyrene	5.2	[39]		5.136	5.135
<i>p</i> -Methylstyrene	5.253	[19]	5.083	5.084	5.082
<i>p</i> -Methylbenzaldehyde	5.431	[20]	5.261	5.26	5.259

Table S5: F_{Methyl} values for a range of substituted toluenes in their S₀ state calculated using Eqn 5*a* (or Eqn 5*b* for G₁₂ molecules) (see paper) calculated using experimental and quantum chemistry rotational constants.

Where available, the experimental F value comes from fits to the observed torsional energies; in a few cases, the value comes from fits to microwave spectra encompassing several torsional states. The rotational constants and θ values are given in Tables S1 and S2. F_{Methyl}^{Expt} values were determined using the experimental

F, A and B constants and the calculated methyl angle θ by Eqn 5a (see Table S1 for the experimental rotational constants and Tables S1 and S2 for the MP2 cc-

pVTZ and DFT B3LYP cc-pVTZ θ values respectively). For G12 molecules, F_{Methyl}^{Expt} (*E*) values are determined using Eqn 5*b*. F_{Methyl}^{Expt} (*C*) values were determined using the experimental *F* value and computed *A*, *B* and θ values by Eqn 5*a* (see Tables S1 and S2 for the MP2 cc-pVTZ and DFT B3LYP cc-pVTZ values respectively). For G12 molecules, F_{Methyl}^{Expt} (*E*) values are determined using Eqn 5*b*.

^AThe values are from fits to the energies of the $m \le 4$ states reported in Gascooke *et al.* (2018).^[30]

^BThere are significant differences in the torsional parameters reported in Ichimura and Suzuki (2000)^[37] and Alvarez-Valtierra *et al.* (2006).^[26] We have re-fitted the torsional band positions reported in Ichimura and Suzuki (2000)^[37] and the table shows the constants determined.

^CValues are also reported in Alvarez-Valtierra *et al.* (2006).^[26] We have used the constants reported in Ichimura and Suzuki (2000)^[37] as they are based on fits to the observed torsional band energies.

Molecule	F	Ref.	F_{Methyl}^{Expt} (E)	$F_{Methyl}^{Expt}(C)$
Toluene	5.3	[21]	5.116	5.114
o-Fluorotoluene	5.12	[28]		5.022
<i>m</i> -Fluorotoluene	5.2	[29]		5.093
<i>p</i> -Fluorotoluene	5.06	[30] ^A		4.879
2,6-Difluorotoluene	5.08	[40]		5.022
o-Chlorotoluene	5.2	[41]		5.137
<i>m</i> -Chlorotoluene	4.15	[31]		4.07
<i>p</i> -Chlorotoluene	4.91	[31]		4.728
2-Chloro,6-fluorotoluene	5	[42]		4.961
o-Tolunitrile	5.16	[10]	5.094	5.094
<i>m</i> -Tolunitrile	5.01	[32]	4.934	4.934
<i>p</i> -Tolunitrile	5.6	[32]		5.414
<i>m</i> -Ethynyltoluene	5.12	[33]		5.044
<i>p</i> -Ethynyltoluene	5.55	[43]		5.366
trans-o-Cresol	5.15	[34]		5.049
cis-o-Cresol	5.1	[34]		5.001
trans-m-Cresol	5.31	[35]		5.2
cis-m-Cresol	5.21	[35]		5.101
<i>p</i> -Cresol	5.11	[23]	4.93	4.928
<i>o</i> -Toluidine	5.4	[36]	5.302	5.302
<i>m</i> -Toluidine	5.24	[36]	5.132	5.131
<i>p</i> -Toluidine	5.41	[16]	5.231	5.228
<i>trans-o</i> -Methylanisole	5.43	В	4.845	4.845
trans-m-Methylanisole	5.51	В	5.347	5.346
cis-m-Methylanisole	5.51	[26]	5.448	5.447
<i>p</i> -Methylanisole	4.2	В	4.04	4.042
<i>trans-m</i> -Methylthioanisole	5.33	[38]		5.254
<i>trans-m</i> -Methylstyrene	5.4	[39]		5.3
<i>cis-m</i> -Methylstyrene	6.1	[39]		6.038
<i>p</i> -Methylstyrene	5.19	[19]	5.025	5.027

Where available, the experimental *F* value comes from a fit to the observed torsional energies; in a few cases, the value comes from a fit to high resolution rotationally resolved spectra for two or more m / v_t states. The rotational constants and θ values are given in Table S3.

^AThe values are from fits to the energies of the $m \le 4$ states reported in Gascooke *et al.* (2018).^[30]

^BValues are reported in Ichimura and Suzuki (2000)^[37] and Alvarez-Valtierra *et al.* (2006).^[26] We have used the constants reported in

Ichimura and Suzuki (2000)^[37] as they are based on fits to the observed torsional band energies.

References

[1] Ferres L, Stahl W, Nguyen HVL. Conformational effects on the torsional barriers in *m*-methylanisole studied by microwave spectroscopy. *J. Chem. Phys.* 2018; 148: 124304.

[2] Ilyushin VV, Alekseev EA, Kisiel Z, Pszczółkowski L. High-J rotational spectrum of toluene in $|m| \leq 3$ torsional states. J. Mol. Spectrosc. 2017; 339: 31-39.

[3] Jacobsen S, Andresen U, Mäder H. Microwave spectra of *o*-fluorotoluene and its ¹³C isotopic species: Methyl internal rotation and molecular structure. *Struct. Chem.* 2003; 14: 217-225.

[4] Rudolph HD, Trinkaus A. Mikrowellenspektrum, Hinderungspotential der internen Rotation und Dipolmoment des meta-Fluortoluols. Z. Naturforsch. A. 1968; 23a: 68-76.

[5] Ghosh PN. Rotation-internal rotation spectrum of *p*-fluorotoluene. *J. Mol. Spectrosc.* 1989; 138: 505-520.

[6] Rottstegge J, Hartwig H, Dreizler H. The rotational spectrum, structure and barrier V_6 to internal rotation of *p*-fluorotoluene. *J. Mol. Struct.* 1999; 478: 37-47.

[7] Nair KPR, Herbers S, Lesarri A, Grabow J-U. Molecular systems with nearly-free internal rotation and nuclear quadrupole coupling: Meta-chlorotoluene. *J. Mol. Spectrosc.* 2019; 361: 1-7.

[8] Shubert VA, Schmitz D, Schnell M. Communication through the phenyl ring: internal rotation and nuclear quadrupole splitting in *p*-halotoluenes. *Mol. Phys.* 2013; 111: 2189-2197.

[9] Jaman AI, Kumar PH, Bangal PR. Millimeter-wave rotational spectrum, barrier to internal rotation, and DFT calculation of *o*-tolunitrile. *J. At. Mol. Opt. Phys.* 2011; 2011: 480396.

[10] Ruiz-Santoyo J, Wilke J, Wilke M, Yi JT, Pratt DW, Schmitt M, Álvarez-Valtierra L. Electronic spectra of 2- and 3-tolunitrile in the gas phase. I. A study of methyl group internal rotation via rovibronically resolved spectroscopy. *J. Chem. Phys.* 2016; 144: 044303.

[11] Obenchain DA, Pinacho P, Zinn S, Schnell M. The low-barrier methyl internal rotation in the rotational spectrum of 3-methylphenylacetylene. *J. Mol. Struct.* 2020; 1213: 128109.

[12] Welzel A, Hellweg A, Merke I, Stahl W. Structural and torsional properties of *o*-cresol and *o*-cresol-OD as obtained from microwave spectroscopy and *ab initio* calculations. *J. Mol. Spectrosc.* 2002; 215: 58-65.

[13] Hellweg A, Hättig C, Merke I, Stahl W. Microwave and theoretical investigation of the internal rotation in *m*-cresol. *J. Chem. Phys.* 2006; 124: 204305.

[14] Hellweg A. Mikrowellenspektroskopische Untersuchungen zur intramolekularen Dynamik von p-Toluidin, p-Kresol und p-Thiokresol. Verlag Mainz; 2003.

[15] Bird RG, Pratt DW. Methyl rotors in the gas phase: A study of *o*- and *m*-toluidine by chirped-pulse Fourier transform microwave spectroscopy. *J. Mol. Spectrosc.* 2011; 266: 81-85.

[16] Tan X-Q, Pratt DW. High-resolution electronic spectroscopy of *p*-toluidine. A precessing rotor model for G₁₂ molecules. *J. Chem. Phys.* 1994; 100: 7061-7067.

[17] Ferres L, Mouhib H, Stahl W, Nguyen HVL. Methyl internal rotation in the microwave spectrum of *o*-methyl anisole. *ChemPhysChem.* 2017; 18: 1855-1859.

[18] Ferres L, Stahl W, Kleiner I, Nguyen HVL. The effect of internal rotation in *p*-methyl anisole studied by microwave spectroscopy. *J. Mol. Spectrosc.* 2018; 343: 44-49.

[19] Schmitt M, Ratzer C, Jacoby C, Meerts WL. Structure and barrier to internal rotation of 4-methylstyrene in the S₀- and S₁-state. *J. Mol. Struct.* 2005; 742: 123-130.

[20] Saal H, Grabow J-U, Hight Walker AR, Hougen JT, Kleiner I, Caminati W. Microwave study of internal rotation in *para*-tolualdehyde: Local versus global symmetry effects at the methyl-rotor site. *J. Mol. Spectrosc.* 2018; 351: 55-61.

[21] Borst DR, Pratt DW. Toluene: Structure, dynamics, and barrier to methyl group rotation in its electronically excited state. A route to IVR. *J. Chem. Phys.* 2000; 113: 3658-3669.

[22] Myszkiewicz G, Meerts WL, Ratzer C, Schmitt M. Rotational isomers of hydroxy deuterated *o*- and *m*-cresols studied by ultraviolet high resolution experiments. *Phys. Chem. Chem. Phys.* 2005; 7: 2142-2150.

[23] Myszkiewicz G, Meerts WL, Ratzer C, Schmitt M. The structure of 4-methylphenol and its water cluster revealed by rotationally resolved UV spectroscopy using a genetic algorithm approach. *J. Chem. Phys.* 2005; 123: 044304.

[24] Kalkman I, Vu C, Schmitt M, Meerts WL. Structure and internal rotation in the S_0 and S_1 states of *o*-toluidine studied by high resolution UV spectroscopy. *Phys. Chem. Chem. Phys.* 2009; 11: 4311-4318.

[25] Morgan PJ, Alvarez-Valtierra L, Pratt DW. High resolution electronic spectroscopy of *o*and *m*-toluidine in the gas phase. Barrier height determinations for the methyl group torsional motions. *J. Phys. Chem. A.* 2009; 113: 13221-13226.

[26] Alvarez-Valtierra L, Yi JT, Pratt DW. Rotationally resolved electronic spectra of 2- and 3-methylanisole in the gas phase: A study of methyl group internal rotation. *J. Phys. Chem. B.* 2006; 110: 19914-19922.

[27] Morgan PJ, Alvarez-Valtierra L, Pratt DW. High resolution electronic spectroscopy of 4methylanisole in the gas phase. Barrier height determinations for the methyl group torsional motion. *Phys. Chem. Chem. Phys.* 2010; 12: 8323-8328.

[28] Okuyama K, Mikami N, Ito M. Internal rotation of the methyl group in the electronically excited state: *o*-, *m*-, and *p*-fluorotoluene. *J. Phys. Chem.* 1985; 89: 5617-5625.

[29] Stewart LD, Gascooke JR, Lawrance WD. A strong interaction between torsion and vibration in S_0 and S_1 *m*-fluorotoluene. *J. Chem. Phys.* 2019; 150: 174303.

[30] Gascooke JR, Stewart LD, Sibley PG, Lawrance WD. Pervasive interactions between methyl torsion and low frequency vibrations in S_0 and S_1 *p*-fluorotoluene. *J. Chem. Phys.* 2018; 149: 074301.

[31] Kojima H, Sakeda K, Suzuki T, Ichimura T. Methyl internal rotation of photoexcited chlorotoluene molecules. *J. Phys. Chem. A.* 1998; 102: 8727-8733.

[32] Fujii M, Yamauchi M, Takazawa K, Ito M. Electronic spectra of *o*-, *m*- and *p*-tolunitrile - Substituent effect on internal rotation of the methyl group. *Spectrochim. Acta A*. 1994; 50: 1421-1433.

[33] Tanaka S-i, Okuyama K. Internal rotation of methyl group in electronically excited *o*- and *m*-ethynyltoluene: New correlation between the Hammett substituent constant σ_m and rotational barrier change. *J. Chem. Phys.* 2011; 134: 084311.

[34] Aota T, Ebata T, Ito M. Rotational isomers and internal rotation of the CH_3 group in S_0 , S_1 and ion of *o*-cresol. *J. Phys. Chem.* 1989; 93: 3519-3522.

[35] Mizuno H, Okuyama K, Ebata T, Ito M. Rotational isomers of *m*-cresol and internal rotation of the CH_3 group in S_0 , S_1 , and the ion. *J. Phys. Chem.* 1987; 91: 5589-5593.

[36] Okuyama K, Mikami N, Ito M. Internal rotation of the methyl group in the electronically excited state: *o*- and *m*-toluidine. *Laser Chem.* 1987; 7: 197-211.

[37] Ichimura T, Suzuki T. Photophysics and photochemical dynamics of methylanisole molecules in a supersonic jet. J. Photochem. Photobiol. C: Photochem. Rev. 2000; 1: 79-107.

[38] Lee H, Kim S-Y, Lim JS, Kim J, Kim SK. Conformer specific excited-state structure of 3-methylthioanisole. *J. Phys. Chem. A.* 2020; 124: 4666-4671.

[39] Hollas JM, Taday PF. Methyl and vinyl torsional potentials in *cis*- and *trans*-3-methylstyrene from supersonic jet fluorescence spectra. *J. Chem. Soc., Faraday trans.* 1991; 87: 3585-3593.

[40] Walker RA, Richard EC, Lu K-T, Weisshaar JC. Methyl-group internal-rotation in 2,6difluorotoluene (S_1) and 2,6-difluorotoluene⁺ (D_0). J. Phys. Chem. 1995; 99: 12422-12433.

[41] Richard EC, Walker RA, Weisshaar JC. Hindered internal rotation and torsion-vibrational coupling in ortho-chlorotoluene (S_1) and ortho-chlorotoluene⁺ (D_0). *J. Chem. Phys.* 1996; 104: 4451-4469.

[42] Walker RA, Richard EC, Weisshaar JC. Barriers to methyl torsion in 2-fluoro-6chlorotoluene: Additivity of *ortho*-substituent effects in S_0 , S_1 , and D_0 . J. Phys. Chem. 1996; 100: 7333-7344.

[43] Philis JG, Melissas VS. An experimental and theoretical study of the $S_1 \leftarrow S_0$ transition of *p*-ethynyltoluene. *J. Chem. Phys.* 2007; 127: 204310.