## **Supplementary Material**

## Controlling emission energy in metal–organic frameworks featuring cyclometalated iridium(III) linkers

*Carol Hua*<sup>A,\*</sup> and *Timothy U. Connell*<sup>B,\*</sup>

<sup>A</sup>School of Chemistry, The University of Melbourne, Parkville, Vic. 3010, Australia

<sup>B</sup>School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Vic. 3216, Australia

\*Correspondence to: Email: carol.hua@unimelb.edu.au, t.connell@deakin.edu.au



**Figure S1.** Partial <sup>1</sup>H NMR spectra (400 MHz,  $d_6$ -DMSO, 298 °K) of [Ir(bt)<sub>2</sub>(Hdcbpy)] immediately after preparation (blue) and measured again after seven days (red). Asterisks (\*) denote free H<sub>2</sub>dcbpy ligand, plus symbols (+) denote residual water.



**Figure S2.** Mass spectra (positive ion) of (a)  $[Ir(piq)_2(H_2dcbpy)]^+$  and (b)  $[Ir(bt)_2(H_2dcbpy)]^+$ .



**Figure S3**. Powder X-ray Diffraction (PXRD) of  $\{Ca[(Ir(ppy)_2(dcbpy)]_2 (DMF)_2\} \cdot 2H_2O(1) (blue) between 2 and 60° 20 v. the calculated pattern (black).$ 



**Figure S4**. PXRD of  $\{Ca[(Ir(piq)_2(dcbpy)]_2 (DMF)_2\} \cdot 2H_2O(2)$  (blue) between 5 and 60° 2 $\theta$  *v*. the calculated pattern (black).



**Figure S5**. PXRD of  $\{Ca[Ir(bt)_2(dcbpy)]_2(dcbpy)(H_2O)_2]\}\cdot 2DMF$  (**3**) (blue) between 5 and 60° 2 $\theta$  v. the calculated pattern (black).

| Compound                                       | {Ca[(Ir(ppy) <sub>2</sub> (dcbpy)] <sub>2</sub><br>(DMF) <sub>2</sub> }·2H <sub>2</sub> O (1) | {Ca[(Ir(piq) <sub>2</sub> (dcbpy)] <sub>2</sub><br>(DMF) <sub>2</sub> }·2H <sub>2</sub> O (2) | {Ca[Ir(bt) <sub>2</sub> (dcbpy)] <sub>2</sub><br>(dcbpy)(H <sub>2</sub> O) <sub>2</sub> ]}<br>·2DMF (3) |
|------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Formula                                        | $C_{74}H_{62}CaIr_2N_{10}O_{12}$                                                              | $C_{90}H_{68}CaIr_2N_{10}O_{12}$                                                              | $C_{91}H_{61}Ca_2Ir_2N_{11}O_{15}S_4$                                                                   |
| Formula Weight                                 | 1707.81                                                                                       | 1906.02                                                                                       | 2141.30                                                                                                 |
| Temperature (K)                                | 100(2)                                                                                        | 100(2)                                                                                        | 100(2)                                                                                                  |
| Crystal system                                 | Monoclinic                                                                                    | Triclinic                                                                                     | Triclinic                                                                                               |
| Space Group                                    | $P2_{1}/c$                                                                                    | <i>P</i> -1                                                                                   | <i>P</i> -1                                                                                             |
| <i>a</i> (Å)                                   | 8.8330(18)                                                                                    | 8.8580(18)                                                                                    | 9.6380(19)                                                                                              |
| <i>b</i> (Å)                                   | 36.811(7)                                                                                     | 16.029(3)                                                                                     | 18.941(4)                                                                                               |
| <i>c</i> (Å)                                   | 10.533(2)                                                                                     | 19.758(4)                                                                                     | 22.687(5)                                                                                               |
| α (°)                                          | 90                                                                                            | 106.75(3)                                                                                     | 75.51(3)                                                                                                |
| β (°)                                          | 100.29(3)                                                                                     | 96.19(3)                                                                                      | 88.64(3)                                                                                                |
| γ (°)                                          | 90                                                                                            | 105.00(3)                                                                                     | 88.30(3)                                                                                                |
| Cell Volume (Å <sup>3</sup> )                  | 3369.8(12)                                                                                    | 2543.8(10)                                                                                    | 4007.5(15)                                                                                              |
| Ζ                                              | 2                                                                                             | 1                                                                                             | 2                                                                                                       |
| $\rho_{calc}$ (g cm <sup>-3</sup> )            | 1.683                                                                                         | 1.244                                                                                         | 1.775                                                                                                   |
| $\mu$ (mm <sup>-1</sup> )                      | 4.093                                                                                         | 2.719                                                                                         | 3.628                                                                                                   |
| F(000)                                         | 1692.0                                                                                        | 948.0                                                                                         | 2124.0                                                                                                  |
| Crystal size (mm <sup>3</sup> )                | $0.1\times0.08\times0.05$                                                                     | $0.1 \times 0.03 \times 0.02$                                                                 | $0.1 \times 0.05 \times 0.05$                                                                           |
| Radiation                                      | Synchrotron                                                                                   | Synchrotron                                                                                   | Synchrotron                                                                                             |
|                                                | $(\lambda = 0.71073)$                                                                         | $(\lambda = 0.71073)$                                                                         | $(\lambda = 0.71073)$                                                                                   |
| Reflections collected                          | 59450                                                                                         | 44897                                                                                         | 72417                                                                                                   |
| Independent                                    | 9892 [ $R_{int} = 0.0253$ ,                                                                   | 12997 [ $R_{int} = 0.0583$ ,                                                                  | 20723 [ $R_{\rm int} = 0.0215$ ,                                                                        |
| reflections                                    | $R_{sigma} = 0.0138$ ]                                                                        | $R_{\rm sigma} = 0.0562$ ]                                                                    | $R_{\rm sigma} = 0.0196$ ]                                                                              |
| Data/restraints/<br>parameters                 | 9892/0/453                                                                                    | 12997/0/525                                                                                   | 20723/0/1130                                                                                            |
| GooF                                           | 1.074                                                                                         | 1.053                                                                                         | 1.079                                                                                                   |
| $R_1, \operatorname{wR}_2(I > 2\sigma(I))$     | $R_1 = 0.0463,$                                                                               | $R_1 = 0.0478,$                                                                               | $R_1 = 0.0326,$                                                                                         |
|                                                | $wR_2 = 0.1285$                                                                               | $wR_2 = 0.1381$                                                                               | $wR_2 = 0.0917$                                                                                         |
| $R_1$ , $wR_2$ (all)                           | $R_1 = 0.0476,$                                                                               | $R_1 = 0.0523,$                                                                               | $R_1 = 0.0336,$                                                                                         |
|                                                | $wR_2 = 0.1303$                                                                               | $wR_2 = 0.1424$                                                                               | $wR_2 = 0.0927$                                                                                         |
| Largest diff.<br>peak/hole (eÅ <sup>-3</sup> ) | 1.66/-3.98                                                                                    | 2.84/-1.61                                                                                    | 2.68/-2.93                                                                                              |

**Table S1.** Crystallographic parameters for compounds 1-3 in this study.



**Figure S6**. Structure of  $\{Ca[Ir(ppy)_2(dcbpy)]_2(DMF)_2\}\cdot 2H_2O$  (1) showing the position of the water molecule sitting within a "pocket" in the framework structure with hydrogen bonds (shown in black and white) to oxygen atoms of two dcbpy ligands.



**Figure S7**. Structure of  $\{Ca[Ir(piq)_2(dcbpy)]_2(DMF)_2\}\cdot 2H_2O$  (2) showing (a) the coordination environment around the Ca<sup>2+</sup> ion (black, carbon; red, oxygen; blue, nitrogen; maroon, iridium; green, calcium), (b) the 1-D chain containing the iridium(III) metalloligand on the top and bottom of the chain (the coordinated DMF molecules have been hidden for clarity).



**Figure S8**. Thermal Gravimetric Analysis of  $\{Ca[(Ir(ppy)_2(dcbpy)]_2(DMF)_2\}\cdot 2H_2O(1)\}$  between 25 and 400°C measured under nitrogen gas with a ramp rate of 10°C min<sup>-1</sup>.



**Figure S9.** Thermal Gravimetric Analysis of  $\{Ca[(Ir(piq)_2(dcbpy)]_2(DMF)_2\} \cdot 2H_2O(2)\}$  between 25 and 400°C measured under nitrogen gas with a ramp rate of 10°C min<sup>-1</sup>.



**Figure S10**. Thermal Gravimetric Analysis of  $\{Ca[Ir(bt)_2(dcbpy)]_2(dcbpy)(H_2O)_2]\}\cdot 2DMF$  (3) between 25 and 400°C measured under nitrogen gas with a ramp rate of 10°C min<sup>-1</sup>.



Figure S11. Absorption spectra of iridium(III) metalloligands in a dichloromethane solution (25  $\mu$ M).



**Figure S12.** Normalised emission spectra of  $[Ir(piq)_2(Hdcbpy)]$  in a dichloromethane solution (25  $\mu$ M, 350-nm excitation, dotted line), solid state powder (380-nm excitation, dashed line) and synthesised calcium(II) MOF (380-nm excitation, solid line).



Figure S13. ATR FT-IR spectra of  ${Ca[(Ir(ppy)_2(dcbpy)]_2(DMF)_2} \cdot 2H_2O$  (1) between 4000 and 400 cm<sup>-1</sup>.



**Figure S14**. ATR FT-IR spectra of  $\{Ca[(Ir(piq)_2(dcbpy)]_2(DMF)_2\} \cdot 2H_2O(2)\}$  between 4000 and 400 cm<sup>-1</sup>.



**Figure S15**. ATR FT-IR spectra of  $\{Ca[Ir(bt)_2(dcbpy)]_2(dcbpy)(H_2O)_2]\}\cdot 2DMF$  (3) between 4000 and 400 cm<sup>-1</sup>.